使用Naive Bayes分类算法对潜在客户的预测方法的应用

Devi Fitrianah, Saruni Dwiasnati, Hanny Hikmayanti H, Kiki Ahmad Baihaqi
{"title":"使用Naive Bayes分类算法对潜在客户的预测方法的应用","authors":"Devi Fitrianah, Saruni Dwiasnati, Hanny Hikmayanti H, Kiki Ahmad Baihaqi","doi":"10.30998/faktorexacta.v14i2.9297","DOIUrl":null,"url":null,"abstract":"Received March 20, 2021 Revised June 4, 2021 Accepted June 13, 2021 Customers are people who trust the management of their money in a bank or other financial service party to be used in banking business operations, thereby expecting a return in the form of money for their savings. To reach information to increase company profits, a method is needed to be able to provide knowledge in supporting the data that the company has. The model can be obtained by using predictive data processing of customer data that is categorized as potential or not potential. Data processing can be done using Machine Learning, namely classification techniques. This technique will produce a churn prediction model for determining the category of customers who fall into the Potential or Not Potential category and find out what accuracy value will be generated by applying the classification technique using the Naïve Bayes Algorithm. The parameters used in this study are Gender, Age, Marital Status, Dependent, Occupation, Region, Information. The data used are 150 data from customers who have participated in the savings program to find out whether the customer is in the Potential or NonPotential category. The accuracy results generated using this data are 86.17% of the tools used by Rapidminner.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes\",\"authors\":\"Devi Fitrianah, Saruni Dwiasnati, Hanny Hikmayanti H, Kiki Ahmad Baihaqi\",\"doi\":\"10.30998/faktorexacta.v14i2.9297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received March 20, 2021 Revised June 4, 2021 Accepted June 13, 2021 Customers are people who trust the management of their money in a bank or other financial service party to be used in banking business operations, thereby expecting a return in the form of money for their savings. To reach information to increase company profits, a method is needed to be able to provide knowledge in supporting the data that the company has. The model can be obtained by using predictive data processing of customer data that is categorized as potential or not potential. Data processing can be done using Machine Learning, namely classification techniques. This technique will produce a churn prediction model for determining the category of customers who fall into the Potential or Not Potential category and find out what accuracy value will be generated by applying the classification technique using the Naïve Bayes Algorithm. The parameters used in this study are Gender, Age, Marital Status, Dependent, Occupation, Region, Information. The data used are 150 data from customers who have participated in the savings program to find out whether the customer is in the Potential or NonPotential category. The accuracy results generated using this data are 86.17% of the tools used by Rapidminner.\",\"PeriodicalId\":53004,\"journal\":{\"name\":\"Faktor Exacta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faktor Exacta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30998/faktorexacta.v14i2.9297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faktor Exacta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30998/faktorexacta.v14i2.9297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

2021年3月20日收到2021年6月4日修订2021年6月份13日接受客户是指相信银行或其他金融服务方对其资金的管理将用于银行业务运营的人,从而期望其储蓄以金钱的形式获得回报。为了获取信息以增加公司利润,需要一种能够提供支持公司现有数据的知识的方法。该模型可以通过使用对被分类为潜在或非潜在的客户数据的预测数据处理来获得。数据处理可以使用机器学习,即分类技术来完成。该技术将产生一个流失预测模型,用于确定属于潜在或非潜在类别的客户类别,并通过使用朴素贝叶斯算法应用分类技术来找出将产生的准确度值。本研究中使用的参数为性别、年龄、婚姻状况、受抚养人、职业、地区、信息。使用的数据是来自参与储蓄计划的客户的150个数据,以确定该客户是潜在客户还是非潜在客户。使用这些数据产生的准确度结果是Rapidminner使用的工具的86.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes
Received March 20, 2021 Revised June 4, 2021 Accepted June 13, 2021 Customers are people who trust the management of their money in a bank or other financial service party to be used in banking business operations, thereby expecting a return in the form of money for their savings. To reach information to increase company profits, a method is needed to be able to provide knowledge in supporting the data that the company has. The model can be obtained by using predictive data processing of customer data that is categorized as potential or not potential. Data processing can be done using Machine Learning, namely classification techniques. This technique will produce a churn prediction model for determining the category of customers who fall into the Potential or Not Potential category and find out what accuracy value will be generated by applying the classification technique using the Naïve Bayes Algorithm. The parameters used in this study are Gender, Age, Marital Status, Dependent, Occupation, Region, Information. The data used are 150 data from customers who have participated in the savings program to find out whether the customer is in the Potential or NonPotential category. The accuracy results generated using this data are 86.17% of the tools used by Rapidminner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Perancangan Diagnosa Covid-19 Menggunakan Metode Case Based Reasoning (CBR) Untuk Mengidentifikasi Tingkatan Gejala Pasien Covid-19 Analisis Model Matematika dan Simulasi Pada Penyebaran Hepatitis Non HepA-E Akut di Indonesia Perancangan Sistem Informasi Hino Service on Site (Studi Kasus : Dealer Hino, PT. Persada Lampung Raya) Penerapan Algoritma Sweep dan Particle Swarm Optimization (PSO) sebagai Alternatif Menentukan Rute Distribusi Penerapan Metode Convolution Neural Network (CNN) Dalam Proses Pengolahan Citra Untuk Mendeteksi Cacat Produksi Pada Produk Masker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1