{"title":"一种新的基于索引调制的非正交多址系统在不完全CSI的Nakagami-m衰落信道上的性能分析","authors":"H. Shwetha, S. Anuradha","doi":"10.13164/re.2023.0425","DOIUrl":null,"url":null,"abstract":". In this paper, a novel index modulation-based non-orthogonal multiple access (IM-NOMA) system is proposed and investigated for both perfect and imperfect channel state information (CSI) uncertainty over Nakagami-m fading channel. The proposed system has added advantages of NOMA and IM systems. NOMA supports more users by allowing all users to utilize the same resources simultaneously whereas IM boosts spectral efficiency by conveying information to the users through both constellation domain and index domain symbols. Maximum likelihood (ML) and successive interference cancellation (SIC) detectors are used at the receiver side to detect index and data symbols. The proposed system is analyzed for different values of Nakagami-m channel parameters as well as for three different CSI conditions - perfect, fixed, and MMSE-based variable CSI uncertainty. The simulation results for the bit error rate and spectral efficiency parameters show that the proposed system outperforms the existing NOMA and OMA schemes.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Novel Index Modulation-Based Non-Orthogonal Multiple Access Systems over Nakagami-m Fading Channels with Imperfect CSI\",\"authors\":\"H. Shwetha, S. Anuradha\",\"doi\":\"10.13164/re.2023.0425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, a novel index modulation-based non-orthogonal multiple access (IM-NOMA) system is proposed and investigated for both perfect and imperfect channel state information (CSI) uncertainty over Nakagami-m fading channel. The proposed system has added advantages of NOMA and IM systems. NOMA supports more users by allowing all users to utilize the same resources simultaneously whereas IM boosts spectral efficiency by conveying information to the users through both constellation domain and index domain symbols. Maximum likelihood (ML) and successive interference cancellation (SIC) detectors are used at the receiver side to detect index and data symbols. The proposed system is analyzed for different values of Nakagami-m channel parameters as well as for three different CSI conditions - perfect, fixed, and MMSE-based variable CSI uncertainty. The simulation results for the bit error rate and spectral efficiency parameters show that the proposed system outperforms the existing NOMA and OMA schemes.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0425\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0425","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Analysis of Novel Index Modulation-Based Non-Orthogonal Multiple Access Systems over Nakagami-m Fading Channels with Imperfect CSI
. In this paper, a novel index modulation-based non-orthogonal multiple access (IM-NOMA) system is proposed and investigated for both perfect and imperfect channel state information (CSI) uncertainty over Nakagami-m fading channel. The proposed system has added advantages of NOMA and IM systems. NOMA supports more users by allowing all users to utilize the same resources simultaneously whereas IM boosts spectral efficiency by conveying information to the users through both constellation domain and index domain symbols. Maximum likelihood (ML) and successive interference cancellation (SIC) detectors are used at the receiver side to detect index and data symbols. The proposed system is analyzed for different values of Nakagami-m channel parameters as well as for three different CSI conditions - perfect, fixed, and MMSE-based variable CSI uncertainty. The simulation results for the bit error rate and spectral efficiency parameters show that the proposed system outperforms the existing NOMA and OMA schemes.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.