{"title":"车头超声波传感器在机动车辆偏离机动前的行人检测。","authors":"Yasuhiro Matsui, S. Oikawa","doi":"10.4271/2021-22-0007","DOIUrl":null,"url":null,"abstract":"Vehicles that start moving from a stationary position can cause fatal traffic accidents involving pedestrians. Ultrasonic sensors installed in the vehicle front are an active technology designed to alert drivers to the presence of stationary objects such as rigid walls in front of their vehicles. However, the ability of such sensors to detect humans has not yet been established. Therefore, this study aims to ascertain whether these sensor systems can successfully detect humans. First, we conducted experiments using four vehicles equipped with ultrasonic sensor systems for vehicle-forward moving-off maneuvers and investigated the detection distances between the vehicles and a pipe (1 m long and having a diameter of 75 mm), child, adult female, or adult male. The detections of human volunteers were evaluated under two different conditions: front-facing and sidefacing toward the front of each vehicle. Front-facing is defined as the condition where the human faces the vehicle front, while side-facing is that where the side of the human faces it. For both the front-facing and side-facing conditions, the results indicated that the sensor-detection distances for a child were shorter than those for the pipe, whereas those for adults were less than or approximately equivalent to those for the pipe. These results revealed that ultrasonic sensor systems for vehicle-forward movingoff maneuvers can detect not only stationary objects but also humans, indicating that ultrasonic sensors installed in the vehicle front could possibly reduce the risk of vehicle-forward moving-off accidents involving pedestrians.","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"65 1","pages":"163-187"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pedestrian Detection before Motor Vehicle Moving Off Maneuvers using Ultrasonic Sensors in the Vehicle Front.\",\"authors\":\"Yasuhiro Matsui, S. Oikawa\",\"doi\":\"10.4271/2021-22-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicles that start moving from a stationary position can cause fatal traffic accidents involving pedestrians. Ultrasonic sensors installed in the vehicle front are an active technology designed to alert drivers to the presence of stationary objects such as rigid walls in front of their vehicles. However, the ability of such sensors to detect humans has not yet been established. Therefore, this study aims to ascertain whether these sensor systems can successfully detect humans. First, we conducted experiments using four vehicles equipped with ultrasonic sensor systems for vehicle-forward moving-off maneuvers and investigated the detection distances between the vehicles and a pipe (1 m long and having a diameter of 75 mm), child, adult female, or adult male. The detections of human volunteers were evaluated under two different conditions: front-facing and sidefacing toward the front of each vehicle. Front-facing is defined as the condition where the human faces the vehicle front, while side-facing is that where the side of the human faces it. For both the front-facing and side-facing conditions, the results indicated that the sensor-detection distances for a child were shorter than those for the pipe, whereas those for adults were less than or approximately equivalent to those for the pipe. These results revealed that ultrasonic sensor systems for vehicle-forward movingoff maneuvers can detect not only stationary objects but also humans, indicating that ultrasonic sensors installed in the vehicle front could possibly reduce the risk of vehicle-forward moving-off accidents involving pedestrians.\",\"PeriodicalId\":35289,\"journal\":{\"name\":\"Stapp car crash journal\",\"volume\":\"65 1\",\"pages\":\"163-187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stapp car crash journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2021-22-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stapp car crash journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2021-22-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Pedestrian Detection before Motor Vehicle Moving Off Maneuvers using Ultrasonic Sensors in the Vehicle Front.
Vehicles that start moving from a stationary position can cause fatal traffic accidents involving pedestrians. Ultrasonic sensors installed in the vehicle front are an active technology designed to alert drivers to the presence of stationary objects such as rigid walls in front of their vehicles. However, the ability of such sensors to detect humans has not yet been established. Therefore, this study aims to ascertain whether these sensor systems can successfully detect humans. First, we conducted experiments using four vehicles equipped with ultrasonic sensor systems for vehicle-forward moving-off maneuvers and investigated the detection distances between the vehicles and a pipe (1 m long and having a diameter of 75 mm), child, adult female, or adult male. The detections of human volunteers were evaluated under two different conditions: front-facing and sidefacing toward the front of each vehicle. Front-facing is defined as the condition where the human faces the vehicle front, while side-facing is that where the side of the human faces it. For both the front-facing and side-facing conditions, the results indicated that the sensor-detection distances for a child were shorter than those for the pipe, whereas those for adults were less than or approximately equivalent to those for the pipe. These results revealed that ultrasonic sensor systems for vehicle-forward movingoff maneuvers can detect not only stationary objects but also humans, indicating that ultrasonic sensors installed in the vehicle front could possibly reduce the risk of vehicle-forward moving-off accidents involving pedestrians.