耐链霉素丁香假单胞菌rpsL基因突变研究。actinidiae Biovar 3韩国分离株

Q4 Agricultural and Biological Sciences Research in Plant Disease Pub Date : 2022-03-31 DOI:10.5423/rpd.2022.28.1.26
Young Sun Lee, Gyoung-Hee Kim, Y. Koh, J. Jung
{"title":"耐链霉素丁香假单胞菌rpsL基因突变研究。actinidiae Biovar 3韩国分离株","authors":"Young Sun Lee, Gyoung-Hee Kim, Y. Koh, J. Jung","doi":"10.5423/rpd.2022.28.1.26","DOIUrl":null,"url":null,"abstract":"Pseudomonas syringae pv. actinidiae (Psa) is the causal agent responsible for the bacterial canker disease of kiwifruit plants. Psa strains are divided into five different biovars based on genetic and biochemical characteristics. Among them, biovar 2 and 3 strains of Psa were isolated and have been causing widespread damages in Korea. One of the most effective ways to control Psa is to use an antibiotic such as streptomycin. However, Psa strains resistant to this antibiotic were isolated in Korea, and an earlier study revealed that the resistance in the biovar 2 is associated with strA-strB genes. This study aimed to determine the molecular resistance mechanism of Psa biovar 3 strains to streptomycin. Sequencing the rpsL gene encoding ribosomal protein S12 from three streptomycin-resistant strains screened in the laboratory revealed that a spontaneous mutation occurred either at codon 43 or 88. Meanwhile, in four streptomycin-resistant strains of Psa biovar 3 isolated from two kiwifruit orchards, a single nucleotide in codon 43 of the rpsL, which is AAA in streptomycin-sensitive strain, was substituted for AGA causing an amino acid change from lysine to arginine. The resistant mechanism in all biovar 3 strains obtained in Korea was identified as a mutation of the rpsL gene.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mutation of rpsL Gene in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea\",\"authors\":\"Young Sun Lee, Gyoung-Hee Kim, Y. Koh, J. Jung\",\"doi\":\"10.5423/rpd.2022.28.1.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudomonas syringae pv. actinidiae (Psa) is the causal agent responsible for the bacterial canker disease of kiwifruit plants. Psa strains are divided into five different biovars based on genetic and biochemical characteristics. Among them, biovar 2 and 3 strains of Psa were isolated and have been causing widespread damages in Korea. One of the most effective ways to control Psa is to use an antibiotic such as streptomycin. However, Psa strains resistant to this antibiotic were isolated in Korea, and an earlier study revealed that the resistance in the biovar 2 is associated with strA-strB genes. This study aimed to determine the molecular resistance mechanism of Psa biovar 3 strains to streptomycin. Sequencing the rpsL gene encoding ribosomal protein S12 from three streptomycin-resistant strains screened in the laboratory revealed that a spontaneous mutation occurred either at codon 43 or 88. Meanwhile, in four streptomycin-resistant strains of Psa biovar 3 isolated from two kiwifruit orchards, a single nucleotide in codon 43 of the rpsL, which is AAA in streptomycin-sensitive strain, was substituted for AGA causing an amino acid change from lysine to arginine. The resistant mechanism in all biovar 3 strains obtained in Korea was identified as a mutation of the rpsL gene.\",\"PeriodicalId\":36349,\"journal\":{\"name\":\"Research in Plant Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Plant Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5423/rpd.2022.28.1.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Plant Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5423/rpd.2022.28.1.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

丁香假单胞菌。猕猴桃(Psa)是引起猕猴桃细菌性溃疡病的病原体。Psa菌株根据遗传和生化特征分为五个不同的生物群。其中,Psa的生物变种2和3菌株被分离出来,并在韩国造成了广泛的破坏。控制Psa最有效的方法之一是使用抗生素,如链霉素。然而,在韩国分离出了对这种抗生素具有耐药性的Psa菌株,早期的一项研究表明,生物变异株2中的耐药性与strA-strB基因有关。本研究旨在确定Psa生物变异株3菌株对链霉素的分子抗性机制。从实验室筛选的三株链霉素抗性菌株中对编码核糖体蛋白S12的rpsL基因进行测序显示,在密码子43或88处发生了自发突变。同时,在从两个猕猴桃园分离的4株Psa生物型3的链霉素抗性菌株中,rpsL密码子43中的一个单核苷酸(链霉素敏感菌株中的AAA)被AGA取代,导致氨基酸从赖氨酸变为精氨酸。在韩国获得的所有生物变体3菌株中,抗性机制被鉴定为rpsL基因的突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mutation of rpsL Gene in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea
Pseudomonas syringae pv. actinidiae (Psa) is the causal agent responsible for the bacterial canker disease of kiwifruit plants. Psa strains are divided into five different biovars based on genetic and biochemical characteristics. Among them, biovar 2 and 3 strains of Psa were isolated and have been causing widespread damages in Korea. One of the most effective ways to control Psa is to use an antibiotic such as streptomycin. However, Psa strains resistant to this antibiotic were isolated in Korea, and an earlier study revealed that the resistance in the biovar 2 is associated with strA-strB genes. This study aimed to determine the molecular resistance mechanism of Psa biovar 3 strains to streptomycin. Sequencing the rpsL gene encoding ribosomal protein S12 from three streptomycin-resistant strains screened in the laboratory revealed that a spontaneous mutation occurred either at codon 43 or 88. Meanwhile, in four streptomycin-resistant strains of Psa biovar 3 isolated from two kiwifruit orchards, a single nucleotide in codon 43 of the rpsL, which is AAA in streptomycin-sensitive strain, was substituted for AGA causing an amino acid change from lysine to arginine. The resistant mechanism in all biovar 3 strains obtained in Korea was identified as a mutation of the rpsL gene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Plant Disease
Research in Plant Disease Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.20
自引率
0.00%
发文量
23
审稿时长
18 weeks
期刊最新文献
Potato Soft Rot Caused by Psychrotolerant Pseudomonas sp. from Subarctic Tundra Soil First Report of Bacterial Spot Disease Caused by Pseudomonas capsici on Castor Bean in Korea Identification and Pathogenicity of Rhizoctonia solani Isolates Causing Leaf and Stem Rot in Three-Leaf Ladybell Effect of Milling on Reduction of Fusarium Mycotoxins in Barley Disease Resistance-Based Management of Alternaria Black Spot in Cruciferous Crops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1