面向电子健康记录系统的通用隐私模型:本体论和机器学习方法

IF 3.4 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Informatics Pub Date : 2023-07-11 DOI:10.3390/informatics10030060
Raza Nowrozy, K. Ahmed, Hua Wang, Timothy Mcintosh
{"title":"面向电子健康记录系统的通用隐私模型:本体论和机器学习方法","authors":"Raza Nowrozy, K. Ahmed, Hua Wang, Timothy Mcintosh","doi":"10.3390/informatics10030060","DOIUrl":null,"url":null,"abstract":"This paper proposed a novel privacy model for Electronic Health Records (EHR) systems utilizing a conceptual privacy ontology and Machine Learning (ML) methodologies. It underscores the challenges currently faced by EHR systems such as balancing privacy and accessibility, user-friendliness, and legal compliance. To address these challenges, the study developed a universal privacy model designed to efficiently manage and share patients’ personal and sensitive data across different platforms, such as MHR and NHS systems. The research employed various BERT techniques to differentiate between legitimate and illegitimate privacy policies. Among them, Distil BERT emerged as the most accurate, demonstrating the potential of our ML-based approach to effectively identify inadequate privacy policies. This paper outlines future research directions, emphasizing the need for comprehensive evaluations, testing in real-world case studies, the investigation of adaptive frameworks, ethical implications, and fostering stakeholder collaboration. This research offers a pioneering approach towards enhancing healthcare information privacy, providing an innovative foundation for future work in this field.","PeriodicalId":37100,"journal":{"name":"Informatics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Universal Privacy Model for Electronic Health Record Systems: An Ontology and Machine Learning Approach\",\"authors\":\"Raza Nowrozy, K. Ahmed, Hua Wang, Timothy Mcintosh\",\"doi\":\"10.3390/informatics10030060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a novel privacy model for Electronic Health Records (EHR) systems utilizing a conceptual privacy ontology and Machine Learning (ML) methodologies. It underscores the challenges currently faced by EHR systems such as balancing privacy and accessibility, user-friendliness, and legal compliance. To address these challenges, the study developed a universal privacy model designed to efficiently manage and share patients’ personal and sensitive data across different platforms, such as MHR and NHS systems. The research employed various BERT techniques to differentiate between legitimate and illegitimate privacy policies. Among them, Distil BERT emerged as the most accurate, demonstrating the potential of our ML-based approach to effectively identify inadequate privacy policies. This paper outlines future research directions, emphasizing the need for comprehensive evaluations, testing in real-world case studies, the investigation of adaptive frameworks, ethical implications, and fostering stakeholder collaboration. This research offers a pioneering approach towards enhancing healthcare information privacy, providing an innovative foundation for future work in this field.\",\"PeriodicalId\":37100,\"journal\":{\"name\":\"Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/informatics10030060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/informatics10030060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用概念隐私本体和机器学习(ML)方法,为电子健康记录(EHR)系统提出了一种新的隐私模型。它强调了EHR系统目前面临的挑战,如平衡隐私和可访问性、用户友好性和法律合规性。为了应对这些挑战,该研究开发了一个通用的隐私模型,旨在通过MHR和NHS系统等不同平台有效管理和共享患者的个人和敏感数据。该研究采用了各种BERT技术来区分合法和非法的隐私政策。其中,Distil BERT是最准确的,证明了我们基于ML的方法在有效识别不充分的隐私政策方面的潜力。本文概述了未来的研究方向,强调了全面评估、现实世界案例研究中的测试、适应性框架的调查、伦理影响以及促进利益相关者合作的必要性。这项研究为加强医疗保健信息隐私提供了一种开创性的方法,为该领域的未来工作提供了创新的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Universal Privacy Model for Electronic Health Record Systems: An Ontology and Machine Learning Approach
This paper proposed a novel privacy model for Electronic Health Records (EHR) systems utilizing a conceptual privacy ontology and Machine Learning (ML) methodologies. It underscores the challenges currently faced by EHR systems such as balancing privacy and accessibility, user-friendliness, and legal compliance. To address these challenges, the study developed a universal privacy model designed to efficiently manage and share patients’ personal and sensitive data across different platforms, such as MHR and NHS systems. The research employed various BERT techniques to differentiate between legitimate and illegitimate privacy policies. Among them, Distil BERT emerged as the most accurate, demonstrating the potential of our ML-based approach to effectively identify inadequate privacy policies. This paper outlines future research directions, emphasizing the need for comprehensive evaluations, testing in real-world case studies, the investigation of adaptive frameworks, ethical implications, and fostering stakeholder collaboration. This research offers a pioneering approach towards enhancing healthcare information privacy, providing an innovative foundation for future work in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics
Informatics Social Sciences-Communication
CiteScore
6.60
自引率
6.50%
发文量
88
审稿时长
6 weeks
期刊最新文献
Simulation of discrete control systems with parallelism of behavior Formal description model and conditions for detecting linked coupling faults of the memory devices A model of homographs automatic identification for the Belarusian language Ontological analysis in the problems of container applications threat modelling Closed Gordon – Newell network with single-line poles and exponentially limited request waiting time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1