基于熵和模糊逻辑的时间序列预测模型

Farhad Ahmed, M. Mohammed
{"title":"基于熵和模糊逻辑的时间序列预测模型","authors":"Farhad Ahmed, M. Mohammed","doi":"10.24271/psr.2023.381058.1230","DOIUrl":null,"url":null,"abstract":"Electricity Power Consumption Forecasting (EPCF) plays an essential role in global electricity distribution systems that has a significant impact on the operation, control, and planning for the production and distribution of electricity. Due to the complexity, and uncertainty of electricity consumption, especially when the amount of load consumed during different hours is not the same, performing forecasting by using the classical method is inaccurate. To strengthen the efficiency, the time series method that uses a fuzzy approach based on refined entropy is presented in the upcoming article. First, given the specified features, the minimization principle approach of entropy (MPAE) is pursued to define the longitude of each interval in the world of discourse. Secondly, a fuzzy relation matrix of time-invariant is constructed according to the first-order model of fuzzy time series, and the minimum fixed amount of time that the data approach the steady state is obtained using the entropy of the fuzzy set, respectively. Eventually, the forecast results are calculated based on the operation of the maximum combination and the principle of full membership. To show the whole forecasting process, hourly data from July 2022 to September 2022 in Sulaymaniyah / Iraq province is used. Results are compared to the traditional statistical (ARIMA) model, and it indicates that the mean squared error and other criteria of the forecasting error in the entropy based on the fuzzy method are significantly better than the traditional statistical model.","PeriodicalId":33835,"journal":{"name":"Passer Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Forecasting Time Series model Based on Entropy and Fuzzy logic\",\"authors\":\"Farhad Ahmed, M. Mohammed\",\"doi\":\"10.24271/psr.2023.381058.1230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity Power Consumption Forecasting (EPCF) plays an essential role in global electricity distribution systems that has a significant impact on the operation, control, and planning for the production and distribution of electricity. Due to the complexity, and uncertainty of electricity consumption, especially when the amount of load consumed during different hours is not the same, performing forecasting by using the classical method is inaccurate. To strengthen the efficiency, the time series method that uses a fuzzy approach based on refined entropy is presented in the upcoming article. First, given the specified features, the minimization principle approach of entropy (MPAE) is pursued to define the longitude of each interval in the world of discourse. Secondly, a fuzzy relation matrix of time-invariant is constructed according to the first-order model of fuzzy time series, and the minimum fixed amount of time that the data approach the steady state is obtained using the entropy of the fuzzy set, respectively. Eventually, the forecast results are calculated based on the operation of the maximum combination and the principle of full membership. To show the whole forecasting process, hourly data from July 2022 to September 2022 in Sulaymaniyah / Iraq province is used. Results are compared to the traditional statistical (ARIMA) model, and it indicates that the mean squared error and other criteria of the forecasting error in the entropy based on the fuzzy method are significantly better than the traditional statistical model.\",\"PeriodicalId\":33835,\"journal\":{\"name\":\"Passer Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Passer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24271/psr.2023.381058.1230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Passer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24271/psr.2023.381058.1230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力消耗预测(EPCF)在全球电力分配系统中起着至关重要的作用,对电力生产和分配的运行、控制和计划产生重大影响。由于用电量的复杂性和不确定性,特别是在不同时段的用电量不相同的情况下,用经典方法进行预测是不准确的。为了提高效率,本文提出了一种基于细化熵的模糊方法的时间序列方法。首先,给定给定的特征,采用熵的最小化原理(MPAE)来定义话语世界中每个间隔的经度。其次,根据模糊时间序列的一阶模型构造定常模糊关系矩阵,利用模糊集的熵分别求出数据接近稳态所需的最小固定时间;最后,根据最大组合的运算和全隶属原则计算预测结果。为了显示整个预测过程,使用了苏莱曼尼亚/伊拉克省2022年7月至2022年9月的每小时数据。结果与传统统计(ARIMA)模型进行了比较,表明基于模糊方法的熵值预测误差的均方误差等指标明显优于传统统计模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Forecasting Time Series model Based on Entropy and Fuzzy logic
Electricity Power Consumption Forecasting (EPCF) plays an essential role in global electricity distribution systems that has a significant impact on the operation, control, and planning for the production and distribution of electricity. Due to the complexity, and uncertainty of electricity consumption, especially when the amount of load consumed during different hours is not the same, performing forecasting by using the classical method is inaccurate. To strengthen the efficiency, the time series method that uses a fuzzy approach based on refined entropy is presented in the upcoming article. First, given the specified features, the minimization principle approach of entropy (MPAE) is pursued to define the longitude of each interval in the world of discourse. Secondly, a fuzzy relation matrix of time-invariant is constructed according to the first-order model of fuzzy time series, and the minimum fixed amount of time that the data approach the steady state is obtained using the entropy of the fuzzy set, respectively. Eventually, the forecast results are calculated based on the operation of the maximum combination and the principle of full membership. To show the whole forecasting process, hourly data from July 2022 to September 2022 in Sulaymaniyah / Iraq province is used. Results are compared to the traditional statistical (ARIMA) model, and it indicates that the mean squared error and other criteria of the forecasting error in the entropy based on the fuzzy method are significantly better than the traditional statistical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
23
审稿时长
12 weeks
期刊最新文献
Study of Algal Diatoms in some water resources in Shaglawa District. Erbil, Kurdistan Region of Iraq Antibacterial Efficacy of Extraction of Salvia palaestina Bentham Characterization of biochemical compounds in different accessions of pomegranate (Punica granatum L.) peels in Iraq Lavender Essential Oil in Sanitation on Fertile Egg Exploring efficient techniques to decrease phosphorus levels in previously farmed land to promote the revival of indigenous grassland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1