Zhisheng Xu, Wenjun Zhao, Long Yan, Xinyu Tang, Yuwei Feng, Zhengyang Wang
{"title":"采用阻燃浸渍和致密化处理相结合的方法将樟子松加工成隔热、热稳定、阻燃材料","authors":"Zhisheng Xu, Wenjun Zhao, Long Yan, Xinyu Tang, Yuwei Feng, Zhengyang Wang","doi":"10.1515/hf-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract Flame-retardant impregnation and densification are two major modification techniques to improve the fire safety of wood. Here, these two techniques were combined to prepare flame-retarded wood, aiming at further fire hazard reduction. The delignated Pinus sylvestris L. was impregnated with boric acid (BA) and graphene oxide (GO) solutions, then densified to prepare densified flame-retarded wood named BGO-DW sample. The results revealed that the BGO-DW sample obtained a limiting oxygen index (LOI) value of 47.4 %. Its backside temperature after 1200 s heating was 49 % lower than that of unmodified wood. Besides, the peak heat release rate (PHRR) and total heat release (THR) values of BGO-DW sample were 72 and 62 % lower than those of unmodified wood due to its shorter pyrolysis interval and lower peak mass loss rate (PMLR), as supported by thermogravimetric (TG) analysis. The flame retardancy of BGO-DW sample could be attributed to the formation of compatible char containing C=C aromatic structure, C–O–C cross-linked structure, and boron trioxide (B2O3) structure. These features of BGO-DW sample offer a new method to improve thermal stability, heat insulation, and flame retardancy for wood and wood-based products.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Processing of Pinus sylvestris L. into a heat-insulating, thermally stable, and flame-retarded material by combining the flame-retardant impregnation and densification treatment\",\"authors\":\"Zhisheng Xu, Wenjun Zhao, Long Yan, Xinyu Tang, Yuwei Feng, Zhengyang Wang\",\"doi\":\"10.1515/hf-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Flame-retardant impregnation and densification are two major modification techniques to improve the fire safety of wood. Here, these two techniques were combined to prepare flame-retarded wood, aiming at further fire hazard reduction. The delignated Pinus sylvestris L. was impregnated with boric acid (BA) and graphene oxide (GO) solutions, then densified to prepare densified flame-retarded wood named BGO-DW sample. The results revealed that the BGO-DW sample obtained a limiting oxygen index (LOI) value of 47.4 %. Its backside temperature after 1200 s heating was 49 % lower than that of unmodified wood. Besides, the peak heat release rate (PHRR) and total heat release (THR) values of BGO-DW sample were 72 and 62 % lower than those of unmodified wood due to its shorter pyrolysis interval and lower peak mass loss rate (PMLR), as supported by thermogravimetric (TG) analysis. The flame retardancy of BGO-DW sample could be attributed to the formation of compatible char containing C=C aromatic structure, C–O–C cross-linked structure, and boron trioxide (B2O3) structure. These features of BGO-DW sample offer a new method to improve thermal stability, heat insulation, and flame retardancy for wood and wood-based products.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2023-0044\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0044","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Processing of Pinus sylvestris L. into a heat-insulating, thermally stable, and flame-retarded material by combining the flame-retardant impregnation and densification treatment
Abstract Flame-retardant impregnation and densification are two major modification techniques to improve the fire safety of wood. Here, these two techniques were combined to prepare flame-retarded wood, aiming at further fire hazard reduction. The delignated Pinus sylvestris L. was impregnated with boric acid (BA) and graphene oxide (GO) solutions, then densified to prepare densified flame-retarded wood named BGO-DW sample. The results revealed that the BGO-DW sample obtained a limiting oxygen index (LOI) value of 47.4 %. Its backside temperature after 1200 s heating was 49 % lower than that of unmodified wood. Besides, the peak heat release rate (PHRR) and total heat release (THR) values of BGO-DW sample were 72 and 62 % lower than those of unmodified wood due to its shorter pyrolysis interval and lower peak mass loss rate (PMLR), as supported by thermogravimetric (TG) analysis. The flame retardancy of BGO-DW sample could be attributed to the formation of compatible char containing C=C aromatic structure, C–O–C cross-linked structure, and boron trioxide (B2O3) structure. These features of BGO-DW sample offer a new method to improve thermal stability, heat insulation, and flame retardancy for wood and wood-based products.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.