基于模块化机器人可编程物的分布式大小约束聚类算法

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Autonomous and Adaptive Systems Pub Date : 2023-01-20 DOI:10.1145/3580282
Jad Bassil, A. Makhoul, Benoît Piranda, J. Bourgeois
{"title":"基于模块化机器人可编程物的分布式大小约束聚类算法","authors":"Jad Bassil, A. Makhoul, Benoît Piranda, J. Bourgeois","doi":"10.1145/3580282","DOIUrl":null,"url":null,"abstract":"Modular robots are defined as autonomous kinematic machines with variable morphology. They are composed of several thousands or even millions of modules that are able to coordinate to behave intelligently. Clustering the modules in modular robots has many benefits, including scalability, energy-efficiency, reducing communication delay, and improving the self-reconfiguration process that focuses on finding a sequence of reconfiguration actions to convert robots from an initial shape to a goal one. The main idea of clustering is to divide the modules in an initial shape into a number of groups based on the final goal shape to enhance the self-reconfiguration process by allowing clusters to reconfigure in parallel. In this work, we prove that the size-constrained clustering problem is NP-complete, and we propose a new tree-based size-constrained clustering algorithm called “SC-Clust.” To show the efficiency of our approach, we implement and demonstrate our algorithm in simulation on networks of up to 30000 modules and on the Blinky Blocks hardware with up to 144 modules.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"18 1","pages":"1 - 21"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed Size-constrained Clustering Algorithm for Modular Robot-based Programmable Matter\",\"authors\":\"Jad Bassil, A. Makhoul, Benoît Piranda, J. Bourgeois\",\"doi\":\"10.1145/3580282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modular robots are defined as autonomous kinematic machines with variable morphology. They are composed of several thousands or even millions of modules that are able to coordinate to behave intelligently. Clustering the modules in modular robots has many benefits, including scalability, energy-efficiency, reducing communication delay, and improving the self-reconfiguration process that focuses on finding a sequence of reconfiguration actions to convert robots from an initial shape to a goal one. The main idea of clustering is to divide the modules in an initial shape into a number of groups based on the final goal shape to enhance the self-reconfiguration process by allowing clusters to reconfigure in parallel. In this work, we prove that the size-constrained clustering problem is NP-complete, and we propose a new tree-based size-constrained clustering algorithm called “SC-Clust.” To show the efficiency of our approach, we implement and demonstrate our algorithm in simulation on networks of up to 30000 modules and on the Blinky Blocks hardware with up to 144 modules.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"18 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580282\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580282","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

模块化机器人被定义为具有可变形态的自主运动学机器。它们由数千甚至数百万个模块组成,这些模块能够协调智能行为。将模块聚集在模块化机器人中有很多好处,包括可扩展性、能源效率、减少通信延迟,以及改进自重构过程,该过程侧重于找到一系列重构动作,将机器人从初始形状转换为目标形状。集群的主要思想是根据最终目标形状将初始形状的模块划分为多个组,以通过允许集群并行重新配置来增强自配置过程。在这项工作中,我们证明了大小约束聚类问题是NP完全的,并提出了一种新的基于树的大小约束聚类算法,称为“SC Clust”。为了证明我们的方法的有效性,我们在多达30000个模块的网络和多达144个模块的Blinky Blocks硬件上实现并演示了我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Size-constrained Clustering Algorithm for Modular Robot-based Programmable Matter
Modular robots are defined as autonomous kinematic machines with variable morphology. They are composed of several thousands or even millions of modules that are able to coordinate to behave intelligently. Clustering the modules in modular robots has many benefits, including scalability, energy-efficiency, reducing communication delay, and improving the self-reconfiguration process that focuses on finding a sequence of reconfiguration actions to convert robots from an initial shape to a goal one. The main idea of clustering is to divide the modules in an initial shape into a number of groups based on the final goal shape to enhance the self-reconfiguration process by allowing clusters to reconfigure in parallel. In this work, we prove that the size-constrained clustering problem is NP-complete, and we propose a new tree-based size-constrained clustering algorithm called “SC-Clust.” To show the efficiency of our approach, we implement and demonstrate our algorithm in simulation on networks of up to 30000 modules and on the Blinky Blocks hardware with up to 144 modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Autonomous and Adaptive Systems
ACM Transactions on Autonomous and Adaptive Systems 工程技术-计算机:理论方法
CiteScore
4.80
自引率
7.40%
发文量
9
审稿时长
>12 weeks
期刊介绍: TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.
期刊最新文献
IBAQ: Frequency-Domain Backdoor Attack Threatening Autonomous Driving via Quadratic Phase Adaptive Scheduling of High-Availability Drone Swarms for Congestion Alleviation in Connected Automated Vehicles Self-Supervised Machine Learning Framework for Online Container Security Attack Detection A Framework for Simultaneous Task Allocation and Planning under Uncertainty Adaptation in Edge Computing: A review on design principles and research challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1