考虑出行者偏好的路线选择强化学习

{"title":"考虑出行者偏好的路线选择强化学习","authors":"","doi":"10.1080/19427867.2023.2231689","DOIUrl":null,"url":null,"abstract":"<div><p>Travelers always perform some preference during the decision-making process. The preference will affect the decision results and can be improved by continuously learning. In order to understand the influence of individual preference on travel behavior choice , two individual preferences, including indifference preference and compulsive preference are considered in the paper. Two updating mechanisms of compulsive preference are proposed to obtain the choosing probability of all alternatives. Reinforcement learning models are established integrating the gain stimulating and loss stimulating considering expected utility. Nguyen Dupuis network is adopted for numerical simulation to study the updating process. Simulation results denote that the equilibrium state is much more efficient when preference learning mechanism is considered comparing with the traditional stochastic user equilibrium model, and can decrease the total travel time greatly, which can be applied for urban traffic management. Personalized traffic guidance is the effective solution to traffic congestion in the future</p></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 7","pages":"Pages 658-671"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning of route choice considering traveler’s preference\",\"authors\":\"\",\"doi\":\"10.1080/19427867.2023.2231689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Travelers always perform some preference during the decision-making process. The preference will affect the decision results and can be improved by continuously learning. In order to understand the influence of individual preference on travel behavior choice , two individual preferences, including indifference preference and compulsive preference are considered in the paper. Two updating mechanisms of compulsive preference are proposed to obtain the choosing probability of all alternatives. Reinforcement learning models are established integrating the gain stimulating and loss stimulating considering expected utility. Nguyen Dupuis network is adopted for numerical simulation to study the updating process. Simulation results denote that the equilibrium state is much more efficient when preference learning mechanism is considered comparing with the traditional stochastic user equilibrium model, and can decrease the total travel time greatly, which can be applied for urban traffic management. Personalized traffic guidance is the effective solution to traffic congestion in the future</p></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"16 7\",\"pages\":\"Pages 658-671\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786723002242\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723002242","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

旅行者在决策过程中总会有一些偏好。偏好会影响决策结果,并可以通过不断学习得到改善。为了理解个人偏好对旅行行为选择的影响,本文考虑了两种个人偏好,包括冷漠偏好和强迫偏好。本文提出了强迫偏好的两种更新机制,以获得所有备选方案的选择概率。考虑到预期效用,建立了收益激励和损失激励相结合的强化学习模型。采用阮杜比网络进行数值模拟,研究更新过程。仿真结果表明,与传统的随机用户平衡模型相比,考虑偏好学习机制的平衡状态更有效,并能大大减少总出行时间,可应用于城市交通管理。个性化交通引导是未来解决交通拥堵的有效方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning of route choice considering traveler’s preference

Travelers always perform some preference during the decision-making process. The preference will affect the decision results and can be improved by continuously learning. In order to understand the influence of individual preference on travel behavior choice , two individual preferences, including indifference preference and compulsive preference are considered in the paper. Two updating mechanisms of compulsive preference are proposed to obtain the choosing probability of all alternatives. Reinforcement learning models are established integrating the gain stimulating and loss stimulating considering expected utility. Nguyen Dupuis network is adopted for numerical simulation to study the updating process. Simulation results denote that the equilibrium state is much more efficient when preference learning mechanism is considered comparing with the traditional stochastic user equilibrium model, and can decrease the total travel time greatly, which can be applied for urban traffic management. Personalized traffic guidance is the effective solution to traffic congestion in the future

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
期刊最新文献
Analysis of the factors affecting the time spent on leisure activities by using an ordered logit model A fast-response mathematical programming approach for delivering disaster relief goods: an earthquake case study The Integrated optimization of intermittent lane intersection design and dynamic signal control: efficiency, safety, and fuel consumption Parcel locker location problem with selectable volume sizes and heterogeneous customers in the last mile delivery Investigating the spatial heterogeneity of factors influencing speeding-related crash severities using correlated random parameter order models with heterogeneity-in-means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1