{"title":"防污生物复合材料的制备及理化性能研究壳聚糖和氧化锌对海洋生物污染的防治作用","authors":"Desy Arisandi, B. Ibrahim, Joko Santoso","doi":"10.4194/trjfas19268","DOIUrl":null,"url":null,"abstract":"Adhesion of biofouling organism creates various problems. Efforts to explore the source of the antifouling material from marine organisms have been carried out, but it is non-cultivable mainly; its work efficiency depends on temperature, pH, concentration, and ineffective exposure time. Therefore, it is necessary to explore new sources of antifouling material by developing antifouling biocomposites from chitosan-ZnO. This study aims to determine the effect of differences in concentration of chitosan and ZnO on biocomposite characterization. This study consisted of 3 stages, 1) characterization of chitosan and ZnO; 2) production and characterization of chitosan-ZnO biocomposite; and 3) antifouling activity testing. The results showed that chitosan was completely soluble in 2% acetic acid with a viscosity of 76.4 to 79.6%, a water content of 10.92%, ash of 1.92%, nitrogen of 3.70%, and a deacetylation level of 85%. The ZnO used in this study had a particle size of 396.1-458.7 nm. Biocomposite characteristics indicated that the best treatment was chitosan 1% -ZnO 0.6 g with 0.31% swelling, 0.18% solubility film, 104.50° hydrophobic and 4.50 MPa adhesion. The results of the anti-fouling tests showed that the treatment of chitosan 1% -ZnO 0.6 g had less biofouling than other treatments.","PeriodicalId":23978,"journal":{"name":"Turkish Journal of Fisheries and Aquatic Sciences","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production and Physicochemical Characterization of Antifouling Biocomposites; The Effect of Chitosan and ZnO to Prevent Marine Biofouling\",\"authors\":\"Desy Arisandi, B. Ibrahim, Joko Santoso\",\"doi\":\"10.4194/trjfas19268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adhesion of biofouling organism creates various problems. Efforts to explore the source of the antifouling material from marine organisms have been carried out, but it is non-cultivable mainly; its work efficiency depends on temperature, pH, concentration, and ineffective exposure time. Therefore, it is necessary to explore new sources of antifouling material by developing antifouling biocomposites from chitosan-ZnO. This study aims to determine the effect of differences in concentration of chitosan and ZnO on biocomposite characterization. This study consisted of 3 stages, 1) characterization of chitosan and ZnO; 2) production and characterization of chitosan-ZnO biocomposite; and 3) antifouling activity testing. The results showed that chitosan was completely soluble in 2% acetic acid with a viscosity of 76.4 to 79.6%, a water content of 10.92%, ash of 1.92%, nitrogen of 3.70%, and a deacetylation level of 85%. The ZnO used in this study had a particle size of 396.1-458.7 nm. Biocomposite characteristics indicated that the best treatment was chitosan 1% -ZnO 0.6 g with 0.31% swelling, 0.18% solubility film, 104.50° hydrophobic and 4.50 MPa adhesion. The results of the anti-fouling tests showed that the treatment of chitosan 1% -ZnO 0.6 g had less biofouling than other treatments.\",\"PeriodicalId\":23978,\"journal\":{\"name\":\"Turkish Journal of Fisheries and Aquatic Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Fisheries and Aquatic Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4194/trjfas19268\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Fisheries and Aquatic Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4194/trjfas19268","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
Production and Physicochemical Characterization of Antifouling Biocomposites; The Effect of Chitosan and ZnO to Prevent Marine Biofouling
Adhesion of biofouling organism creates various problems. Efforts to explore the source of the antifouling material from marine organisms have been carried out, but it is non-cultivable mainly; its work efficiency depends on temperature, pH, concentration, and ineffective exposure time. Therefore, it is necessary to explore new sources of antifouling material by developing antifouling biocomposites from chitosan-ZnO. This study aims to determine the effect of differences in concentration of chitosan and ZnO on biocomposite characterization. This study consisted of 3 stages, 1) characterization of chitosan and ZnO; 2) production and characterization of chitosan-ZnO biocomposite; and 3) antifouling activity testing. The results showed that chitosan was completely soluble in 2% acetic acid with a viscosity of 76.4 to 79.6%, a water content of 10.92%, ash of 1.92%, nitrogen of 3.70%, and a deacetylation level of 85%. The ZnO used in this study had a particle size of 396.1-458.7 nm. Biocomposite characteristics indicated that the best treatment was chitosan 1% -ZnO 0.6 g with 0.31% swelling, 0.18% solubility film, 104.50° hydrophobic and 4.50 MPa adhesion. The results of the anti-fouling tests showed that the treatment of chitosan 1% -ZnO 0.6 g had less biofouling than other treatments.
期刊介绍:
Turkish Journal of Fisheries and Aquatic Sciences" (TrJFAS) is a refereed academic journal has been published by Central Fisheries Research Institute of Turkey and Japan International Cooperation Agency (JICA), and published in English.
It aims to address research and needs of all working and studying within the many varied areas of fisheries and aquatic sciences.
The Journal publishes English language original research papers, critical review articles, short communications and technical notes on applied or scientific research relevant to freshwater, brackish and marine environments.
TrJFAS was published biannually (April & November) between 2001 and 2009. A great number of manuscripts have been submitted to the journal for review from acceptance of the SCI index. Thereby, the journal has been published quarterly (March, June, September and December) from 2010 to 2017. The journal will be published monthly in 2018.