{"title":"基于深度学习框架的番茄叶病生物分类","authors":"A. Aggarwal","doi":"10.46300/91011.2022.16.30","DOIUrl":null,"url":null,"abstract":"Biological Tomato leaf classification is very important to decide the pesticide, insecticide, and other treatments needed for the plant to yield good crop. The images captured by handheld cameras or using drones are used by various machine learning algorithms to identify the diseases. Such methods need extraction of features from the images before the machine learning methods can be used for disease identification. In this paper, a deep learning framework is proposed that automatically extracts features in a hierarchical manner. The features are classified using neural networks to classify the leaves into three classes, viz. no disease, bacterial spot, and Septoria leaf spot. The performance of the model is tested using accuracy as the performance metric. The obtained performance metric validates the performance of the method. The method is useful for taking corrective measures to disease management of tomato plants.","PeriodicalId":53488,"journal":{"name":"International Journal of Biology and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Biological Tomato Leaf Disease Classification using Deep Learning Framework\",\"authors\":\"A. Aggarwal\",\"doi\":\"10.46300/91011.2022.16.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological Tomato leaf classification is very important to decide the pesticide, insecticide, and other treatments needed for the plant to yield good crop. The images captured by handheld cameras or using drones are used by various machine learning algorithms to identify the diseases. Such methods need extraction of features from the images before the machine learning methods can be used for disease identification. In this paper, a deep learning framework is proposed that automatically extracts features in a hierarchical manner. The features are classified using neural networks to classify the leaves into three classes, viz. no disease, bacterial spot, and Septoria leaf spot. The performance of the model is tested using accuracy as the performance metric. The obtained performance metric validates the performance of the method. The method is useful for taking corrective measures to disease management of tomato plants.\",\"PeriodicalId\":53488,\"journal\":{\"name\":\"International Journal of Biology and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biology and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91011.2022.16.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2022.16.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Biological Tomato Leaf Disease Classification using Deep Learning Framework
Biological Tomato leaf classification is very important to decide the pesticide, insecticide, and other treatments needed for the plant to yield good crop. The images captured by handheld cameras or using drones are used by various machine learning algorithms to identify the diseases. Such methods need extraction of features from the images before the machine learning methods can be used for disease identification. In this paper, a deep learning framework is proposed that automatically extracts features in a hierarchical manner. The features are classified using neural networks to classify the leaves into three classes, viz. no disease, bacterial spot, and Septoria leaf spot. The performance of the model is tested using accuracy as the performance metric. The obtained performance metric validates the performance of the method. The method is useful for taking corrective measures to disease management of tomato plants.
期刊介绍:
Topics: Molecular Dynamics, Biochemistry, Biophysics, Quantum Chemistry, Molecular Biology, Cell Biology, Immunology, Neurophysiology, Genetics, Population Dynamics, Dynamics of Diseases, Bioecology, Epidemiology, Social Dynamics, PhotoBiology, PhotoChemistry, Plant Biology, Microbiology, Immunology, Bioinformatics, Signal Transduction, Environmental Systems, Psychological and Cognitive Systems, Pattern Formation, Evolution, Game Theory and Adaptive Dynamics, Bioengineering, Biotechnolgies, Medical Imaging, Medical Signal Processing, Feedback Control in Biology and Chemistry, Fluid Mechanics and Applications in Biomedicine, Space Medicine and Biology, Nuclear Biology and Medicine.