Brigitta Czauner , Anita Erőss , Szilvia Szkolnikovics-Simon , Ábel Markó , Petra Baják , Tímea Trásy-Havril , Márk Szijártó , Zsóka Szabó , Katalin Hegedűs-Csondor , Judit Mádl-Szőnyi
{"title":"从盆地规模的地下水流动到匈牙利罗兰大学水文地质研究小组的综合地质流体研究","authors":"Brigitta Czauner , Anita Erőss , Szilvia Szkolnikovics-Simon , Ábel Markó , Petra Baják , Tímea Trásy-Havril , Márk Szijártó , Zsóka Szabó , Katalin Hegedűs-Csondor , Judit Mádl-Szőnyi","doi":"10.1016/j.hydroa.2022.100142","DOIUrl":null,"url":null,"abstract":"<div><p>This review paper briefly summarizes the research results of the majority (∼70%) women team of the Hydrogeology Research Group of Eötvös Loránd University, Hungary, led by Judit Mádl-Szőnyi. The group had originally focused on basin-scale groundwater flow systems and the related processes and phenomena but extended its research activity to other geofluids in answer to global challenges such as the water crisis, climate change, and energy transition. However, the core concept of these studies remained the basin-scale system approach of groundwater flow, as these flow systems interact with the rock framework and all other geofluids resulting in a systematic distribution of the related environmental and geological processes and phenomena. The presented methodological developments and mostly general results have been and can be utilized in the future in any sedimentary basins. These cover the following fields of hydrogeology and geofluid research: carbonate and karst hydrogeology, asymmetric basin and flow pattern, geothermal and petroleum hydrogeology, radioactivity of groundwater, groundwater and surface water interaction, groundwater-dependent ecosystems, effects of climate change on groundwater flow systems, managed aquifer recharge.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"17 ","pages":"Article 100142"},"PeriodicalIF":3.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000244/pdfft?md5=7cb5db394ed2ca816b2aeb4f13dce39c&pid=1-s2.0-S2589915522000244-main.pdf","citationCount":"1","resultStr":"{\"title\":\"From basin-scale groundwater flow to integrated geofluid research in the hydrogeology research group of Eötvös Loránd University, Hungary\",\"authors\":\"Brigitta Czauner , Anita Erőss , Szilvia Szkolnikovics-Simon , Ábel Markó , Petra Baják , Tímea Trásy-Havril , Márk Szijártó , Zsóka Szabó , Katalin Hegedűs-Csondor , Judit Mádl-Szőnyi\",\"doi\":\"10.1016/j.hydroa.2022.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review paper briefly summarizes the research results of the majority (∼70%) women team of the Hydrogeology Research Group of Eötvös Loránd University, Hungary, led by Judit Mádl-Szőnyi. The group had originally focused on basin-scale groundwater flow systems and the related processes and phenomena but extended its research activity to other geofluids in answer to global challenges such as the water crisis, climate change, and energy transition. However, the core concept of these studies remained the basin-scale system approach of groundwater flow, as these flow systems interact with the rock framework and all other geofluids resulting in a systematic distribution of the related environmental and geological processes and phenomena. The presented methodological developments and mostly general results have been and can be utilized in the future in any sedimentary basins. These cover the following fields of hydrogeology and geofluid research: carbonate and karst hydrogeology, asymmetric basin and flow pattern, geothermal and petroleum hydrogeology, radioactivity of groundwater, groundwater and surface water interaction, groundwater-dependent ecosystems, effects of climate change on groundwater flow systems, managed aquifer recharge.</p></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"17 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589915522000244/pdfft?md5=7cb5db394ed2ca816b2aeb4f13dce39c&pid=1-s2.0-S2589915522000244-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915522000244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915522000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
From basin-scale groundwater flow to integrated geofluid research in the hydrogeology research group of Eötvös Loránd University, Hungary
This review paper briefly summarizes the research results of the majority (∼70%) women team of the Hydrogeology Research Group of Eötvös Loránd University, Hungary, led by Judit Mádl-Szőnyi. The group had originally focused on basin-scale groundwater flow systems and the related processes and phenomena but extended its research activity to other geofluids in answer to global challenges such as the water crisis, climate change, and energy transition. However, the core concept of these studies remained the basin-scale system approach of groundwater flow, as these flow systems interact with the rock framework and all other geofluids resulting in a systematic distribution of the related environmental and geological processes and phenomena. The presented methodological developments and mostly general results have been and can be utilized in the future in any sedimentary basins. These cover the following fields of hydrogeology and geofluid research: carbonate and karst hydrogeology, asymmetric basin and flow pattern, geothermal and petroleum hydrogeology, radioactivity of groundwater, groundwater and surface water interaction, groundwater-dependent ecosystems, effects of climate change on groundwater flow systems, managed aquifer recharge.