{"title":"无应力逆转饱和致密砂不排水循环特性及阻力的DEM分析","authors":"Xin-Hui Zhou, Yan-Guo Zhou, Yun-Min Chen","doi":"10.1007/s10035-023-01328-9","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional discrete element method (DEM) is used to study the undrained cyclic behavior and cyclic resistance of dense granular materials under cyclic triaxial loading without stress reversals, and to clarify the effect of initial static shear on liquefaction resistance and the underlying micro-mechanism. A series of undrained stress-controlled cyclic triaxial tests were simulated with different combinations of cyclic stress ratio <i>CSR</i> and initial static shear stress ratio <i>α</i>, where the cyclic behavior of “residual deformation accumulation” was identified. Two types of residual excess pore pressure generation patterns were distinguished by the degree of stress reversal <i>D</i> (<i>D</i> = <i>CSR</i>/<i> α</i>). The growth rate of residual axial strain is both <i>CSR</i>- and <i>α</i> -dependent. The evolution of internal structure of the granular materials was quantified using a contact-normal-based fabric tensor and mechanical coordination number <i>MCN</i>. The larger <i>α</i> (i.e., smaller consolidation stress ratios in triaxial tests) leads to higher degree of stress-induced fabric anisotropy. The cyclic resistance of dense granular materials increases with initial fabric anisotropy. During cyclic loading, the dense granular materials with higher initial fabric anisotropy exhibited slower reduction in mechanical coordination number between soil particles. The present study shed lights on the underlying mechanism that why the presence of initial static shear is beneficial to the cyclic resistance for dense granular materials under cyclic triaxial test condition.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"25 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEM analysis of undrained cyclic behavior and resistance of saturated dense sand without stress reversals\",\"authors\":\"Xin-Hui Zhou, Yan-Guo Zhou, Yun-Min Chen\",\"doi\":\"10.1007/s10035-023-01328-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional discrete element method (DEM) is used to study the undrained cyclic behavior and cyclic resistance of dense granular materials under cyclic triaxial loading without stress reversals, and to clarify the effect of initial static shear on liquefaction resistance and the underlying micro-mechanism. A series of undrained stress-controlled cyclic triaxial tests were simulated with different combinations of cyclic stress ratio <i>CSR</i> and initial static shear stress ratio <i>α</i>, where the cyclic behavior of “residual deformation accumulation” was identified. Two types of residual excess pore pressure generation patterns were distinguished by the degree of stress reversal <i>D</i> (<i>D</i> = <i>CSR</i>/<i> α</i>). The growth rate of residual axial strain is both <i>CSR</i>- and <i>α</i> -dependent. The evolution of internal structure of the granular materials was quantified using a contact-normal-based fabric tensor and mechanical coordination number <i>MCN</i>. The larger <i>α</i> (i.e., smaller consolidation stress ratios in triaxial tests) leads to higher degree of stress-induced fabric anisotropy. The cyclic resistance of dense granular materials increases with initial fabric anisotropy. During cyclic loading, the dense granular materials with higher initial fabric anisotropy exhibited slower reduction in mechanical coordination number between soil particles. The present study shed lights on the underlying mechanism that why the presence of initial static shear is beneficial to the cyclic resistance for dense granular materials under cyclic triaxial test condition.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01328-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01328-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DEM analysis of undrained cyclic behavior and resistance of saturated dense sand without stress reversals
Two-dimensional discrete element method (DEM) is used to study the undrained cyclic behavior and cyclic resistance of dense granular materials under cyclic triaxial loading without stress reversals, and to clarify the effect of initial static shear on liquefaction resistance and the underlying micro-mechanism. A series of undrained stress-controlled cyclic triaxial tests were simulated with different combinations of cyclic stress ratio CSR and initial static shear stress ratio α, where the cyclic behavior of “residual deformation accumulation” was identified. Two types of residual excess pore pressure generation patterns were distinguished by the degree of stress reversal D (D = CSR/ α). The growth rate of residual axial strain is both CSR- and α -dependent. The evolution of internal structure of the granular materials was quantified using a contact-normal-based fabric tensor and mechanical coordination number MCN. The larger α (i.e., smaller consolidation stress ratios in triaxial tests) leads to higher degree of stress-induced fabric anisotropy. The cyclic resistance of dense granular materials increases with initial fabric anisotropy. During cyclic loading, the dense granular materials with higher initial fabric anisotropy exhibited slower reduction in mechanical coordination number between soil particles. The present study shed lights on the underlying mechanism that why the presence of initial static shear is beneficial to the cyclic resistance for dense granular materials under cyclic triaxial test condition.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.