P. Tchórz, M. Szymanski, M. Rosiński, T. Chodukowski, S. Borodziuk
{"title":"汤姆逊抛物线光谱仪在各种激光等离子体和激光聚变相关实验中的能力","authors":"P. Tchórz, M. Szymanski, M. Rosiński, T. Chodukowski, S. Borodziuk","doi":"10.2478/nuka-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract The Thomson parabola spectrometer (TPS) [1] is a well-known, universal diagnostic tool that is widely used in laser plasma experiments to measure the parameters of accelerated ions. In contrast to other popular ion diagnostics, such as semiconductor detectors or ion collectors, the TPS is not greatly affected by electromagnetic pulses generated during high-power laser interaction with matter and can be tuned to acquire data in various energy ranges of accelerated ions, depending on the goal of the experiment. Despite the many advantages of this diagnostic device, processing the collected data is a difficult task and requires a lot of caution during interpretation of gathered results. In this work, we introduce the basic principles of operation and data analysis based on the numerical tool created specifically for the TPS designed at the Institute of Plasma Physics and Laser Microfusion, present a range of data obtained during various recent experiments in which our TPS was used, and highlight the difficulties in data analysis depending on the purpose of the experiment and the experimental setup.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"68 1","pages":"29 - 36"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experiments\",\"authors\":\"P. Tchórz, M. Szymanski, M. Rosiński, T. Chodukowski, S. Borodziuk\",\"doi\":\"10.2478/nuka-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Thomson parabola spectrometer (TPS) [1] is a well-known, universal diagnostic tool that is widely used in laser plasma experiments to measure the parameters of accelerated ions. In contrast to other popular ion diagnostics, such as semiconductor detectors or ion collectors, the TPS is not greatly affected by electromagnetic pulses generated during high-power laser interaction with matter and can be tuned to acquire data in various energy ranges of accelerated ions, depending on the goal of the experiment. Despite the many advantages of this diagnostic device, processing the collected data is a difficult task and requires a lot of caution during interpretation of gathered results. In this work, we introduce the basic principles of operation and data analysis based on the numerical tool created specifically for the TPS designed at the Institute of Plasma Physics and Laser Microfusion, present a range of data obtained during various recent experiments in which our TPS was used, and highlight the difficulties in data analysis depending on the purpose of the experiment and the experimental setup.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":\"68 1\",\"pages\":\"29 - 36\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2023-0005\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2023-0005","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experiments
Abstract The Thomson parabola spectrometer (TPS) [1] is a well-known, universal diagnostic tool that is widely used in laser plasma experiments to measure the parameters of accelerated ions. In contrast to other popular ion diagnostics, such as semiconductor detectors or ion collectors, the TPS is not greatly affected by electromagnetic pulses generated during high-power laser interaction with matter and can be tuned to acquire data in various energy ranges of accelerated ions, depending on the goal of the experiment. Despite the many advantages of this diagnostic device, processing the collected data is a difficult task and requires a lot of caution during interpretation of gathered results. In this work, we introduce the basic principles of operation and data analysis based on the numerical tool created specifically for the TPS designed at the Institute of Plasma Physics and Laser Microfusion, present a range of data obtained during various recent experiments in which our TPS was used, and highlight the difficulties in data analysis depending on the purpose of the experiment and the experimental setup.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.