N. Terashima, Y. Matsushita, Sachie Yagami, H. Nishimura, Masato Yoshida, K. Fukushima
{"title":"单素糖苷在银杏木质部形成过程中细胞壁组分超分子组装中的作用","authors":"N. Terashima, Y. Matsushita, Sachie Yagami, H. Nishimura, Masato Yoshida, K. Fukushima","doi":"10.1515/hf-2022-0163","DOIUrl":null,"url":null,"abstract":"Abstract The physical, chemical and biological properties of wood depend on the supramolecular assembly of cellulose microfibrils (CMFs), hemicelluloses (HCs) and lignin in the growing cell walls. Based on the 13C-tracer studies of ginkgo xylem formation, a hypothetical scenario for the role of monolignol glucosides (MLGs) in the assembly is proposed as follows: (1) Both moieties, aglycone monolignols and glycone d-glucose (d-Glc), play essential roles in a cooperative manner in delivery of hydrophobic and highly reactive p-hydroxycinnamyl- (H), coniferyl- (G) alcohols to the hydrophilic site of lignin deposition. (2) The d-Glc liberated at lignification site is converted into essential HCs mainly via Golgi apparatus under the influence of diurnally changing turgor pressure, and partly converted in the apoplast. (3) At cell corner middle lamella, a pressure-resistant layer of HG-lignin-HCs-CMFs is formed, and allows expansion of new cells in cambium region by elevation of turgor pressure. The deformable G-lignin-HCs-CMFs layer at secondary wall shrinks by dehydration of the swollen gel of HCs-CMFs during differentiation, and contributes posture control of standing tree. On-demand quick supply of a large amount of monolignols and HCs can be achieved by the large storage and delivery of MLGs in the growing ginkgo xylem.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"77 1","pages":"485 - 499"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of monolignol glucosides in supramolecular assembly of cell wall components in ginkgo xylem formation\",\"authors\":\"N. Terashima, Y. Matsushita, Sachie Yagami, H. Nishimura, Masato Yoshida, K. Fukushima\",\"doi\":\"10.1515/hf-2022-0163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The physical, chemical and biological properties of wood depend on the supramolecular assembly of cellulose microfibrils (CMFs), hemicelluloses (HCs) and lignin in the growing cell walls. Based on the 13C-tracer studies of ginkgo xylem formation, a hypothetical scenario for the role of monolignol glucosides (MLGs) in the assembly is proposed as follows: (1) Both moieties, aglycone monolignols and glycone d-glucose (d-Glc), play essential roles in a cooperative manner in delivery of hydrophobic and highly reactive p-hydroxycinnamyl- (H), coniferyl- (G) alcohols to the hydrophilic site of lignin deposition. (2) The d-Glc liberated at lignification site is converted into essential HCs mainly via Golgi apparatus under the influence of diurnally changing turgor pressure, and partly converted in the apoplast. (3) At cell corner middle lamella, a pressure-resistant layer of HG-lignin-HCs-CMFs is formed, and allows expansion of new cells in cambium region by elevation of turgor pressure. The deformable G-lignin-HCs-CMFs layer at secondary wall shrinks by dehydration of the swollen gel of HCs-CMFs during differentiation, and contributes posture control of standing tree. On-demand quick supply of a large amount of monolignols and HCs can be achieved by the large storage and delivery of MLGs in the growing ginkgo xylem.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\"77 1\",\"pages\":\"485 - 499\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2022-0163\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2022-0163","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
摘要
木材的物理、化学和生物学特性取决于生长细胞壁中纤维素微原纤维(CMFs)、半纤维素(hc)和木质素的超分子组装。基于银杏木质部形成的13c示踪研究,提出了单脂醇糖苷(MLGs)在木质素组装中的作用假设:(1)糖醛基单脂醇和糖醛基d-葡萄糖(d-Glc)这两个部分在将疏水和高活性的对羟基肉桂基- (H)、针叶树基- (G)醇传递到木质素沉积的亲水性位点中发挥重要作用。(2)木质化部位释放的d-Glc在日变化的膨胀压力影响下主要通过高尔基体转化为必需的hc,部分在外质体中转化。(3)在细胞角的中间片层,形成了一层hg -木质素- hc - cmfs耐压层,并通过膨胀压力的升高使形成层区域的新细胞膨胀。次级壁上可变形的g -木质素-HCs-CMFs层在分化过程中因HCs-CMFs肿胀凝胶脱水而收缩,对立木姿态控制起作用。在生长中的银杏木质部中,MLGs的大量储存和输送可以实现大量单素醇和hc的按需快速供应。
Role of monolignol glucosides in supramolecular assembly of cell wall components in ginkgo xylem formation
Abstract The physical, chemical and biological properties of wood depend on the supramolecular assembly of cellulose microfibrils (CMFs), hemicelluloses (HCs) and lignin in the growing cell walls. Based on the 13C-tracer studies of ginkgo xylem formation, a hypothetical scenario for the role of monolignol glucosides (MLGs) in the assembly is proposed as follows: (1) Both moieties, aglycone monolignols and glycone d-glucose (d-Glc), play essential roles in a cooperative manner in delivery of hydrophobic and highly reactive p-hydroxycinnamyl- (H), coniferyl- (G) alcohols to the hydrophilic site of lignin deposition. (2) The d-Glc liberated at lignification site is converted into essential HCs mainly via Golgi apparatus under the influence of diurnally changing turgor pressure, and partly converted in the apoplast. (3) At cell corner middle lamella, a pressure-resistant layer of HG-lignin-HCs-CMFs is formed, and allows expansion of new cells in cambium region by elevation of turgor pressure. The deformable G-lignin-HCs-CMFs layer at secondary wall shrinks by dehydration of the swollen gel of HCs-CMFs during differentiation, and contributes posture control of standing tree. On-demand quick supply of a large amount of monolignols and HCs can be achieved by the large storage and delivery of MLGs in the growing ginkgo xylem.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.