{"title":"条件深度生成网络在道路碰撞风险经验贝叶斯估计和碰撞热点识别中的应用","authors":"Mohammad Zarei, Bruce Hellinga, Pedram Izadpanah","doi":"10.1016/j.ijtst.2023.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>The conditional generative adversarial network (CGAN) is used in this paper for empirical Bayes (EB) analysis of road crash hotspots. EB is a well-known method for estimating the expected crash frequency of sites (e.g. road segments, intersections) and then prioritising these sites to identify a subset of high priority sites (e.g. hotspots) for additional safety audits/improvements. In contrast to the conventional EB approach, which employs a statistical model such as the negative binomial model (NB-EB) to model crash frequency data, the recently developed CGAN-EB approach uses a conditional generative adversarial network, a form of deep neural network, that can model any form of distributions of the crash frequency data. Previous research has shown that the CGAN-EB performs as well as or better than NB-EB, however that work considered only a small range of crash data characteristics and did not examine the spatial and temporal transferability. In this paper a series of simulation experiments are devised and carried out to assess the CGAN-EB performance across a wide range of conditions and compares it to the NB-EB. The simulation results show that CGAN-EB performs as well as NB-EB when conditions favor the NB-EB model (i.e. data conform to the assumptions of the NB model) and outperforms NB-EB in experiments reflecting conditions frequently encountered in practice (i.e. low sample mean crash rates, and when crash frequency does not follow a log-linear relationship with covariates). Also, temporal and spatial transferability of both approaches were evaluated using field data and both CGAN-EB and NB-EB approaches were found to have similar performance.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2046043023000084/pdfft?md5=2465256101f2d75ef4563dbd4d2c3a56&pid=1-s2.0-S2046043023000084-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of Conditional Deep Generative Networks (CGAN) in empirical bayes estimation of road crash risk and identifying crash hotspots\",\"authors\":\"Mohammad Zarei, Bruce Hellinga, Pedram Izadpanah\",\"doi\":\"10.1016/j.ijtst.2023.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conditional generative adversarial network (CGAN) is used in this paper for empirical Bayes (EB) analysis of road crash hotspots. EB is a well-known method for estimating the expected crash frequency of sites (e.g. road segments, intersections) and then prioritising these sites to identify a subset of high priority sites (e.g. hotspots) for additional safety audits/improvements. In contrast to the conventional EB approach, which employs a statistical model such as the negative binomial model (NB-EB) to model crash frequency data, the recently developed CGAN-EB approach uses a conditional generative adversarial network, a form of deep neural network, that can model any form of distributions of the crash frequency data. Previous research has shown that the CGAN-EB performs as well as or better than NB-EB, however that work considered only a small range of crash data characteristics and did not examine the spatial and temporal transferability. In this paper a series of simulation experiments are devised and carried out to assess the CGAN-EB performance across a wide range of conditions and compares it to the NB-EB. The simulation results show that CGAN-EB performs as well as NB-EB when conditions favor the NB-EB model (i.e. data conform to the assumptions of the NB model) and outperforms NB-EB in experiments reflecting conditions frequently encountered in practice (i.e. low sample mean crash rates, and when crash frequency does not follow a log-linear relationship with covariates). Also, temporal and spatial transferability of both approaches were evaluated using field data and both CGAN-EB and NB-EB approaches were found to have similar performance.</p></div>\",\"PeriodicalId\":52282,\"journal\":{\"name\":\"International Journal of Transportation Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2046043023000084/pdfft?md5=2465256101f2d75ef4563dbd4d2c3a56&pid=1-s2.0-S2046043023000084-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Transportation Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2046043023000084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043023000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Application of Conditional Deep Generative Networks (CGAN) in empirical bayes estimation of road crash risk and identifying crash hotspots
The conditional generative adversarial network (CGAN) is used in this paper for empirical Bayes (EB) analysis of road crash hotspots. EB is a well-known method for estimating the expected crash frequency of sites (e.g. road segments, intersections) and then prioritising these sites to identify a subset of high priority sites (e.g. hotspots) for additional safety audits/improvements. In contrast to the conventional EB approach, which employs a statistical model such as the negative binomial model (NB-EB) to model crash frequency data, the recently developed CGAN-EB approach uses a conditional generative adversarial network, a form of deep neural network, that can model any form of distributions of the crash frequency data. Previous research has shown that the CGAN-EB performs as well as or better than NB-EB, however that work considered only a small range of crash data characteristics and did not examine the spatial and temporal transferability. In this paper a series of simulation experiments are devised and carried out to assess the CGAN-EB performance across a wide range of conditions and compares it to the NB-EB. The simulation results show that CGAN-EB performs as well as NB-EB when conditions favor the NB-EB model (i.e. data conform to the assumptions of the NB model) and outperforms NB-EB in experiments reflecting conditions frequently encountered in practice (i.e. low sample mean crash rates, and when crash frequency does not follow a log-linear relationship with covariates). Also, temporal and spatial transferability of both approaches were evaluated using field data and both CGAN-EB and NB-EB approaches were found to have similar performance.