{"title":"8090铝锂合金表面低压等离子喷涂铁基非晶涂层的界面结合","authors":"Shilei Hao, Shan-lin Wang, Yuhua Chen, Haoran Zhang","doi":"10.1080/02670844.2023.2195085","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fe-based amorphous coatings (AMC) are deposited on 8090 Al–Li alloy using low-pressure plasma spraying. Coating’s microstructure and interfacial characteristics are investigated. The coating is mainly amorphous in structure. Some crystalline phases were observed between the two splats. The corrosion current density of this coating is two orders of magnitude less compared to 8090. The coating has high density as the average porosity is less than 0.5%. Because of partial melting and quick cooling of the 8090 alloy in the process of molten droplets deposition, there is an amorphous transition zone formed at the interface of AMC/8090 Al–Li alloy, which indicates localized metallurgical bonding. In electrochemical testing, the coating shows an obvious passivation tendency, and crystallization between splats is the main cause of corrosion. Owing to the low oxygen content, the coating exhibits excellent wear resistance.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"150 - 160"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interfacial bonding of low-pressure plasma-sprayed Fe-based amorphous coating on 8090 Al–Li alloy\",\"authors\":\"Shilei Hao, Shan-lin Wang, Yuhua Chen, Haoran Zhang\",\"doi\":\"10.1080/02670844.2023.2195085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Fe-based amorphous coatings (AMC) are deposited on 8090 Al–Li alloy using low-pressure plasma spraying. Coating’s microstructure and interfacial characteristics are investigated. The coating is mainly amorphous in structure. Some crystalline phases were observed between the two splats. The corrosion current density of this coating is two orders of magnitude less compared to 8090. The coating has high density as the average porosity is less than 0.5%. Because of partial melting and quick cooling of the 8090 alloy in the process of molten droplets deposition, there is an amorphous transition zone formed at the interface of AMC/8090 Al–Li alloy, which indicates localized metallurgical bonding. In electrochemical testing, the coating shows an obvious passivation tendency, and crystallization between splats is the main cause of corrosion. Owing to the low oxygen content, the coating exhibits excellent wear resistance.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"39 1\",\"pages\":\"150 - 160\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2023.2195085\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2195085","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Interfacial bonding of low-pressure plasma-sprayed Fe-based amorphous coating on 8090 Al–Li alloy
ABSTRACT Fe-based amorphous coatings (AMC) are deposited on 8090 Al–Li alloy using low-pressure plasma spraying. Coating’s microstructure and interfacial characteristics are investigated. The coating is mainly amorphous in structure. Some crystalline phases were observed between the two splats. The corrosion current density of this coating is two orders of magnitude less compared to 8090. The coating has high density as the average porosity is less than 0.5%. Because of partial melting and quick cooling of the 8090 alloy in the process of molten droplets deposition, there is an amorphous transition zone formed at the interface of AMC/8090 Al–Li alloy, which indicates localized metallurgical bonding. In electrochemical testing, the coating shows an obvious passivation tendency, and crystallization between splats is the main cause of corrosion. Owing to the low oxygen content, the coating exhibits excellent wear resistance.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.