G. Molino, M. Palmieri, Giorgia Montalbano, S. Fiorilli, C. Vitale-Brovarone
{"title":"仿生和介孔纳米羟基磷灰石在骨组织中的应用综述","authors":"G. Molino, M. Palmieri, Giorgia Montalbano, S. Fiorilli, C. Vitale-Brovarone","doi":"10.1088/1748-605X/ab5f1a","DOIUrl":null,"url":null,"abstract":"In the last decades, many research groups have experimented the synthesis of hydroxyapatite (HA) for bone tissue application obtaining products with different shapes and dimensions. This review aims to summarise and critically analyse the most used methods to prepare physiologic-like nano-HA, in the form of plates or rods, similar to the HA present in the human bones. Moreover, mesoporous HA has gained increasing interest in the biomedical field due its pecualiar structural features, such as high surface area and accessible mesoporous volume, which is known to confer enhanced biological behaviour and the possibility to act as nanocarriers of functional agents for bone-related therapies. For this reason, more recent studies related to the synthesis of mesoporous HA, with physiological-like morphology, are also considered in this review. Since a wide class of surfactant molecules plays an essential role both in the shape and size control of HA crystals and in the formation of mesoporosity, a section devoted to the mechanisms of action of several surfactants is also provided.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab5f1a","citationCount":"47","resultStr":"{\"title\":\"Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review\",\"authors\":\"G. Molino, M. Palmieri, Giorgia Montalbano, S. Fiorilli, C. Vitale-Brovarone\",\"doi\":\"10.1088/1748-605X/ab5f1a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decades, many research groups have experimented the synthesis of hydroxyapatite (HA) for bone tissue application obtaining products with different shapes and dimensions. This review aims to summarise and critically analyse the most used methods to prepare physiologic-like nano-HA, in the form of plates or rods, similar to the HA present in the human bones. Moreover, mesoporous HA has gained increasing interest in the biomedical field due its pecualiar structural features, such as high surface area and accessible mesoporous volume, which is known to confer enhanced biological behaviour and the possibility to act as nanocarriers of functional agents for bone-related therapies. For this reason, more recent studies related to the synthesis of mesoporous HA, with physiological-like morphology, are also considered in this review. Since a wide class of surfactant molecules plays an essential role both in the shape and size control of HA crystals and in the formation of mesoporosity, a section devoted to the mechanisms of action of several surfactants is also provided.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1748-605X/ab5f1a\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ab5f1a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab5f1a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review
In the last decades, many research groups have experimented the synthesis of hydroxyapatite (HA) for bone tissue application obtaining products with different shapes and dimensions. This review aims to summarise and critically analyse the most used methods to prepare physiologic-like nano-HA, in the form of plates or rods, similar to the HA present in the human bones. Moreover, mesoporous HA has gained increasing interest in the biomedical field due its pecualiar structural features, such as high surface area and accessible mesoporous volume, which is known to confer enhanced biological behaviour and the possibility to act as nanocarriers of functional agents for bone-related therapies. For this reason, more recent studies related to the synthesis of mesoporous HA, with physiological-like morphology, are also considered in this review. Since a wide class of surfactant molecules plays an essential role both in the shape and size control of HA crystals and in the formation of mesoporosity, a section devoted to the mechanisms of action of several surfactants is also provided.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters