突出危险煤层煤的光谱研究

IF 2.8 Q2 MINING & MINERAL PROCESSING Mining of Mineral Deposits Pub Date : 2023-03-30 DOI:10.33271/mining17.01.093
S. Krasnovyd, Andrii Konchits, B. Shanina, M. Valakh, V. Yukhymchuk, M. Skoryk, O. Molchanov, Oleksandr Kamchatny
{"title":"突出危险煤层煤的光谱研究","authors":"S. Krasnovyd, Andrii Konchits, B. Shanina, M. Valakh, V. Yukhymchuk, M. Skoryk, O. Molchanov, Oleksandr Kamchatny","doi":"10.33271/mining17.01.093","DOIUrl":null,"url":null,"abstract":"Purpose is to analyze influence mechanisms of physicochemical coal properties on the degree of outburst risk as well as desorption kinetics of methane. Methods of scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and Raman scattering (RS) have been applied. The samples have been taken from Donbas coal seams varying in their ranks (i.e. carbonization degree). Findings. It has been identified that in the context of outburst hazardous zones, the ratio between integral intensity of spectral RS bands D and G, K = I(D)/I(G) shows abnormal dependence upon the nominal amount of volatile compounds connected with the impact by iron impurities. It has been defined that within the ferriferous coal samples, concentration of spins ns (i.e. the broken carbon bonds) correlates with iron content. Methane adsorption/desorption processes in the studied coal samples have been studied with the help of NMR method; in addition, they have been described using superposition of diffusion and filtration mechanisms. Originality. It has been understood that high iron content is typical for coal with a greater outburst hazardous degree. The abovementioned iron content and I(D)/I(G) and Ns correlation between the values determines the key role of iron impurities for coal metamorphism processes. For the first time, correlation between the outburst hazardous degree of coal seam and intensity of 3030 cm-1 IR band, stipulated by aromatic CH groups where hydrogen is in atomic status, has been identified. Practical implications. Predictability of outburst risk has been improved in the context of coal seam mining.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coal from the outburst hazardous mine seams: Spectroscopic study\",\"authors\":\"S. Krasnovyd, Andrii Konchits, B. Shanina, M. Valakh, V. Yukhymchuk, M. Skoryk, O. Molchanov, Oleksandr Kamchatny\",\"doi\":\"10.33271/mining17.01.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose is to analyze influence mechanisms of physicochemical coal properties on the degree of outburst risk as well as desorption kinetics of methane. Methods of scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and Raman scattering (RS) have been applied. The samples have been taken from Donbas coal seams varying in their ranks (i.e. carbonization degree). Findings. It has been identified that in the context of outburst hazardous zones, the ratio between integral intensity of spectral RS bands D and G, K = I(D)/I(G) shows abnormal dependence upon the nominal amount of volatile compounds connected with the impact by iron impurities. It has been defined that within the ferriferous coal samples, concentration of spins ns (i.e. the broken carbon bonds) correlates with iron content. Methane adsorption/desorption processes in the studied coal samples have been studied with the help of NMR method; in addition, they have been described using superposition of diffusion and filtration mechanisms. Originality. It has been understood that high iron content is typical for coal with a greater outburst hazardous degree. The abovementioned iron content and I(D)/I(G) and Ns correlation between the values determines the key role of iron impurities for coal metamorphism processes. For the first time, correlation between the outburst hazardous degree of coal seam and intensity of 3030 cm-1 IR band, stipulated by aromatic CH groups where hydrogen is in atomic status, has been identified. Practical implications. Predictability of outburst risk has been improved in the context of coal seam mining.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining17.01.093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.01.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

目的分析煤的理化性质对突出危险性程度的影响机理及甲烷的解吸动力学。应用了扫描电镜(SEM)、电子顺磁共振(EPR)、核磁共振(NMR)、红外光谱(IR)和拉曼散射(RS)等方法。这些样品取自顿巴斯不同等级(即碳化程度)的煤层。发现。在突出危险区的情况下,光谱RS波段积分强度D与G之间的比值K = I(D)/I(G)与铁杂质影响相关的挥发性化合物标称量呈异常依赖关系。已经确定,在含铁煤样品中,自旋ns(即断裂的碳键)的浓度与铁含量相关。利用核磁共振技术研究了甲烷在煤样中的吸附/解吸过程;此外,它们已经用扩散和过滤机制的叠加来描述。创意。据了解,高铁含量是突出危险性较大的煤的典型特征。上述铁含量与I(D)/I(G)和Ns之间的相关性值决定了铁杂质在煤变质过程中的关键作用。首次确定了煤层突出危险程度与氢处于原子态的芳香族CH所规定的3030 cm-1红外波段强度之间的相关性。实际意义。在煤层开采的背景下,突出危险性的可预测性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coal from the outburst hazardous mine seams: Spectroscopic study
Purpose is to analyze influence mechanisms of physicochemical coal properties on the degree of outburst risk as well as desorption kinetics of methane. Methods of scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and Raman scattering (RS) have been applied. The samples have been taken from Donbas coal seams varying in their ranks (i.e. carbonization degree). Findings. It has been identified that in the context of outburst hazardous zones, the ratio between integral intensity of spectral RS bands D and G, K = I(D)/I(G) shows abnormal dependence upon the nominal amount of volatile compounds connected with the impact by iron impurities. It has been defined that within the ferriferous coal samples, concentration of spins ns (i.e. the broken carbon bonds) correlates with iron content. Methane adsorption/desorption processes in the studied coal samples have been studied with the help of NMR method; in addition, they have been described using superposition of diffusion and filtration mechanisms. Originality. It has been understood that high iron content is typical for coal with a greater outburst hazardous degree. The abovementioned iron content and I(D)/I(G) and Ns correlation between the values determines the key role of iron impurities for coal metamorphism processes. For the first time, correlation between the outburst hazardous degree of coal seam and intensity of 3030 cm-1 IR band, stipulated by aromatic CH groups where hydrogen is in atomic status, has been identified. Practical implications. Predictability of outburst risk has been improved in the context of coal seam mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining of Mineral Deposits
Mining of Mineral Deposits MINING & MINERAL PROCESSING-
CiteScore
5.20
自引率
15.80%
发文量
52
期刊最新文献
Analyzing stability of protective structures as the elements of geotechnical tailing pond safety Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods Optimizing the blast fragmentation quality of discontinuous rock mass: Case study of Jebel Bouzegza Open-Cast Mine, North Algeria Use of solid mining waste to improve water retention capacity of loamy soils Deformation as a process to transform shape and volume of protective structures of the development mine workings during coal-rock mass off-loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1