{"title":"随机无响应条件下有限总体均值的核权估计","authors":"Nelson Kiprono Bii, C. O. Onyango, J. Odhiambo","doi":"10.1155/2020/8090381","DOIUrl":null,"url":null,"abstract":"Nonresponse is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random nonresponse using auxiliary data. In this study, it is assumed that random nonresponse occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random nonresponse. In particular, auxiliary information is used via an improved Nadaraya–Watson kernel regression technique to compensate for random nonresponse. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of a finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at coverage rate. The results obtained in this study are useful for instance in choosing efficient estimators of a finite population mean in demographic sample surveys.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8090381","citationCount":"2","resultStr":"{\"title\":\"Estimation of a Finite Population Mean under Random Nonresponse Using Kernel Weights\",\"authors\":\"Nelson Kiprono Bii, C. O. Onyango, J. Odhiambo\",\"doi\":\"10.1155/2020/8090381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonresponse is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random nonresponse using auxiliary data. In this study, it is assumed that random nonresponse occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random nonresponse. In particular, auxiliary information is used via an improved Nadaraya–Watson kernel regression technique to compensate for random nonresponse. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of a finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at coverage rate. The results obtained in this study are useful for instance in choosing efficient estimators of a finite population mean in demographic sample surveys.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/8090381\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/8090381\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8090381","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimation of a Finite Population Mean under Random Nonresponse Using Kernel Weights
Nonresponse is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random nonresponse using auxiliary data. In this study, it is assumed that random nonresponse occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random nonresponse. In particular, auxiliary information is used via an improved Nadaraya–Watson kernel regression technique to compensate for random nonresponse. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of a finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at coverage rate. The results obtained in this study are useful for instance in choosing efficient estimators of a finite population mean in demographic sample surveys.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.