斑马鱼糖尿病及其微血管并发症模型的建立

IF 1.8 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Journal of Vascular Research Pub Date : 2022-04-04 DOI:10.1159/000522471
Changsheng Chen, Dong Liu
{"title":"斑马鱼糖尿病及其微血管并发症模型的建立","authors":"Changsheng Chen, Dong Liu","doi":"10.1159/000522471","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus (DM) is a chronic metabolic disease known to cause several microvascular complications, including diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Hyperglycemia plays a key role in inducing diabetic microvascular complications. A cohort of diabetic animal models has been established to study diabetes-related vascular diseases. However, the zebrafish model offers unique advantages in this field. The tiny size and huge offspring numbers of zebrafish make it amenable to perform large-scale analysis or screening. The easily accessible strategies for gene manipulation with morpholino or CRISPR/Cas9 and chemical/drug treatment through microinjection or skin absorption allow establishing the zebrafish DM models by a variety of means. In addition, the transparency of zebrafish embryos makes it accessible to perform in vivo high-resolution imaging of the vascular system. In this review, we focus on the strategies to establish diabetic or hyperglycemic models with zebrafish and the achievements and disadvantages of using zebrafish as a model to study diabetic microvascular complications.","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Establishment of Zebrafish Models for Diabetes Mellitus and Its Microvascular Complications\",\"authors\":\"Changsheng Chen, Dong Liu\",\"doi\":\"10.1159/000522471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes mellitus (DM) is a chronic metabolic disease known to cause several microvascular complications, including diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Hyperglycemia plays a key role in inducing diabetic microvascular complications. A cohort of diabetic animal models has been established to study diabetes-related vascular diseases. However, the zebrafish model offers unique advantages in this field. The tiny size and huge offspring numbers of zebrafish make it amenable to perform large-scale analysis or screening. The easily accessible strategies for gene manipulation with morpholino or CRISPR/Cas9 and chemical/drug treatment through microinjection or skin absorption allow establishing the zebrafish DM models by a variety of means. In addition, the transparency of zebrafish embryos makes it accessible to perform in vivo high-resolution imaging of the vascular system. In this review, we focus on the strategies to establish diabetic or hyperglycemic models with zebrafish and the achievements and disadvantages of using zebrafish as a model to study diabetic microvascular complications.\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000522471\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000522471","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 4

摘要

糖尿病(DM)是一种慢性代谢性疾病,已知可引起多种微血管并发症,包括糖尿病视网膜病变、糖尿病肾病和糖尿病神经病变。高血糖是诱发糖尿病微血管并发症的关键因素。为了研究糖尿病相关血管疾病,建立了糖尿病动物模型。然而,斑马鱼模型在这一领域具有独特的优势。斑马鱼的体积小,后代数量多,这使得它适合进行大规模的分析或筛选。使用morpholino或CRISPR/Cas9进行基因操作以及通过显微注射或皮肤吸收进行化学/药物治疗的容易获得的策略允许通过多种手段建立斑马鱼DM模型。此外,斑马鱼胚胎的透明性使其能够在体内进行血管系统的高分辨率成像。本文就利用斑马鱼建立糖尿病或高血糖模型的策略以及利用斑马鱼作为模型研究糖尿病微血管并发症的成就和不足作一综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishment of Zebrafish Models for Diabetes Mellitus and Its Microvascular Complications
Diabetes mellitus (DM) is a chronic metabolic disease known to cause several microvascular complications, including diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Hyperglycemia plays a key role in inducing diabetic microvascular complications. A cohort of diabetic animal models has been established to study diabetes-related vascular diseases. However, the zebrafish model offers unique advantages in this field. The tiny size and huge offspring numbers of zebrafish make it amenable to perform large-scale analysis or screening. The easily accessible strategies for gene manipulation with morpholino or CRISPR/Cas9 and chemical/drug treatment through microinjection or skin absorption allow establishing the zebrafish DM models by a variety of means. In addition, the transparency of zebrafish embryos makes it accessible to perform in vivo high-resolution imaging of the vascular system. In this review, we focus on the strategies to establish diabetic or hyperglycemic models with zebrafish and the achievements and disadvantages of using zebrafish as a model to study diabetic microvascular complications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vascular Research
Journal of Vascular Research 医学-生理学
CiteScore
3.40
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.
期刊最新文献
Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses. Blood Urea Nitrogen to Left Ventricular Ejection Ratio as a Predictor of Short-Term Outcome in Acute Myocardial Infarction Complicated by Cardiogenic Shock. Preoperative Congestive Heart Failure Is Associated with Higher 30-Day Myocardial Infarction and Pneumonia after Endovascular Repair of Abdominal Aortic Aneurysm. Senescent CD4+ T-Cell Phenotypes and Inflammatory Milieu in the Coronary and Systemic Circulation in ST-Elevation Myocardial Infarction: An Exploratory Study. In Memoriam: A Tribute to Eva Aralikatti.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1