悬臂梁大挠度的模态修正方法

IF 3.6 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Wind Energy Science Pub Date : 2023-01-16 DOI:10.5194/wes-8-109-2023
Ozan Gözcü, E. Barlas, Suguang Dou
{"title":"悬臂梁大挠度的模态修正方法","authors":"Ozan Gözcü, E. Barlas, Suguang Dou","doi":"10.5194/wes-8-109-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Modal-based reduced-order models are preferred for modeling structures due to their computational efficiency in engineering problems. One of the important limitations of the classic modal approaches is that they are geometrically linear. This study proposes a fast correction method to account for geometric nonlinearities which stem from large deflections in cantilever beams. The method relies on pre-computed correction terms and thus adds negligibly small extra computational efforts during the time domain response analyses. The accuracy of the method is examined on a straight-beam model and International Energy Agency (IEA) 15 MW wind turbine blade model. The results show that the proposed method increases the accuracy of modal approaches significantly in secondary deflections due to nonlinearities such as axial and torsional motions for the two studied cases.\n","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A correction method for large deflections of cantilever beams with a modal approach\",\"authors\":\"Ozan Gözcü, E. Barlas, Suguang Dou\",\"doi\":\"10.5194/wes-8-109-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Modal-based reduced-order models are preferred for modeling structures due to their computational efficiency in engineering problems. One of the important limitations of the classic modal approaches is that they are geometrically linear. This study proposes a fast correction method to account for geometric nonlinearities which stem from large deflections in cantilever beams. The method relies on pre-computed correction terms and thus adds negligibly small extra computational efforts during the time domain response analyses. The accuracy of the method is examined on a straight-beam model and International Energy Agency (IEA) 15 MW wind turbine blade model. The results show that the proposed method increases the accuracy of modal approaches significantly in secondary deflections due to nonlinearities such as axial and torsional motions for the two studied cases.\\n\",\"PeriodicalId\":46540,\"journal\":{\"name\":\"Wind Energy Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Energy Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/wes-8-109-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-8-109-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于模态的降阶模型由于其在工程问题中的计算效率而优选用于结构建模。经典模态方法的一个重要局限性是它们是几何线性的。本研究提出了一种快速校正方法来解决悬臂梁中由大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加了可忽略的小的额外计算工作量。该方法的准确性在直梁模型和国际能源署(IEA)15上进行了检验 MW风力涡轮机叶片模型。结果表明,对于所研究的两种情况,由于轴向和扭转运动等非线性,所提出的方法显著提高了模态方法在二次偏转中的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A correction method for large deflections of cantilever beams with a modal approach
Abstract. Modal-based reduced-order models are preferred for modeling structures due to their computational efficiency in engineering problems. One of the important limitations of the classic modal approaches is that they are geometrically linear. This study proposes a fast correction method to account for geometric nonlinearities which stem from large deflections in cantilever beams. The method relies on pre-computed correction terms and thus adds negligibly small extra computational efforts during the time domain response analyses. The accuracy of the method is examined on a straight-beam model and International Energy Agency (IEA) 15 MW wind turbine blade model. The results show that the proposed method increases the accuracy of modal approaches significantly in secondary deflections due to nonlinearities such as axial and torsional motions for the two studied cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Energy Science
Wind Energy Science GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
6.90
自引率
27.50%
发文量
115
审稿时长
28 weeks
期刊最新文献
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype Free-vortex models for wind turbine wakes under yaw misalignment – a validation study on far-wake effects Feedforward pitch control for a 15 MW wind turbine using a spinner-mounted single-beam lidar A new methodology for upscaling semi-submersible platforms for floating offshore wind turbines An analytical linear two-dimensional actuator disc model and comparisons with computational fluid dynamics (CFD) simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1