Subhashree Mohapatra, G. Pati, Manohar Mishra, T. Swarnkar
{"title":"UPolySeg:基于u - net的结肠镜图像息肉分割网络","authors":"Subhashree Mohapatra, G. Pati, Manohar Mishra, T. Swarnkar","doi":"10.3390/gastroent13030027","DOIUrl":null,"url":null,"abstract":"Colonoscopy is a gold standard procedure for tracking the lower gastrointestinal region. A colorectal polyp is one such condition that is detected through colonoscopy. Even though technical advancements have improved the early detection of colorectal polyps, there is still a high percentage of misses due to various factors. Polyp segmentation can play a significant role in the detection of polyps at the early stage and can thus help reduce the severity of the disease. In this work, the authors implemented several image pre-processing techniques such as coherence transport and contrast limited adaptive histogram equalization (CLAHE) to handle different challenges in colonoscopy images. The processed image was then segmented into a polyp and normal pixel using a U-Net-based deep learning segmentation model named UPolySeg. The main framework of UPolySeg has an encoder–decoder section with feature concatenation in the same layer as the encoder–decoder along with the use of dilated convolution. The model was experimentally verified using the publicly available Kvasir-SEG dataset, which gives a global accuracy of 96.77%, a dice coefficient of 96.86%, an IoU of 87.91%, a recall of 95.57%, and a precision of 92.29%. The new framework for the polyp segmentation implementing UPolySeg improved the performance by 1.93% compared with prior work.","PeriodicalId":43586,"journal":{"name":"Gastroenterology Insights","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"UPolySeg: A U-Net-Based Polyp Segmentation Network Using Colonoscopy Images\",\"authors\":\"Subhashree Mohapatra, G. Pati, Manohar Mishra, T. Swarnkar\",\"doi\":\"10.3390/gastroent13030027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colonoscopy is a gold standard procedure for tracking the lower gastrointestinal region. A colorectal polyp is one such condition that is detected through colonoscopy. Even though technical advancements have improved the early detection of colorectal polyps, there is still a high percentage of misses due to various factors. Polyp segmentation can play a significant role in the detection of polyps at the early stage and can thus help reduce the severity of the disease. In this work, the authors implemented several image pre-processing techniques such as coherence transport and contrast limited adaptive histogram equalization (CLAHE) to handle different challenges in colonoscopy images. The processed image was then segmented into a polyp and normal pixel using a U-Net-based deep learning segmentation model named UPolySeg. The main framework of UPolySeg has an encoder–decoder section with feature concatenation in the same layer as the encoder–decoder along with the use of dilated convolution. The model was experimentally verified using the publicly available Kvasir-SEG dataset, which gives a global accuracy of 96.77%, a dice coefficient of 96.86%, an IoU of 87.91%, a recall of 95.57%, and a precision of 92.29%. The new framework for the polyp segmentation implementing UPolySeg improved the performance by 1.93% compared with prior work.\",\"PeriodicalId\":43586,\"journal\":{\"name\":\"Gastroenterology Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/gastroent13030027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/gastroent13030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
UPolySeg: A U-Net-Based Polyp Segmentation Network Using Colonoscopy Images
Colonoscopy is a gold standard procedure for tracking the lower gastrointestinal region. A colorectal polyp is one such condition that is detected through colonoscopy. Even though technical advancements have improved the early detection of colorectal polyps, there is still a high percentage of misses due to various factors. Polyp segmentation can play a significant role in the detection of polyps at the early stage and can thus help reduce the severity of the disease. In this work, the authors implemented several image pre-processing techniques such as coherence transport and contrast limited adaptive histogram equalization (CLAHE) to handle different challenges in colonoscopy images. The processed image was then segmented into a polyp and normal pixel using a U-Net-based deep learning segmentation model named UPolySeg. The main framework of UPolySeg has an encoder–decoder section with feature concatenation in the same layer as the encoder–decoder along with the use of dilated convolution. The model was experimentally verified using the publicly available Kvasir-SEG dataset, which gives a global accuracy of 96.77%, a dice coefficient of 96.86%, an IoU of 87.91%, a recall of 95.57%, and a precision of 92.29%. The new framework for the polyp segmentation implementing UPolySeg improved the performance by 1.93% compared with prior work.