Minqiang Bu, A. Murray, Myungho Kook, J. Buylaert, K. Thomsen
{"title":"全谱分析在NaI(Tl)γ能谱测定埋葬剂量率中的应用","authors":"Minqiang Bu, A. Murray, Myungho Kook, J. Buylaert, K. Thomsen","doi":"10.2478/GEOCHR-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we explored the potential of a NaI(Tl) scintillator-based gamma spectrometer for the accurate determination of burial dose rates in natural geological samples using a full spectrum analysis (FSA) approach. In this method, an iterative reweighted least-square regression is used to fit calibration standard spectra (40K, and 238U and 232Th series in equilibrium) to the sample spectrum, after subtraction of an appropriate background. The resulting minimum detection limits for 40K, 238U, and 232Th are 4.8, 0.4 and 0.3 Bq·kg−1, respectively (for a 0.23 kg sample); this is one order of magnitude lower than those obtained with the three-window approach previously reported by us, and well below the concentrations found in most natural sediments. These improved values are also comparable to those from high-resolution HPGe gamma spectrometry. Almost all activity concentrations of 40K, 238U, and 232Th from 20 measured natural samples differ by ≤5% from the high resolution spectrometry values; the average ratio of dose rates derived from our NaI(Tl) spectrometer to those from HPGe spectrometry is 0.993 ± 0.004 (n=20). We conclude that our scintillation spectrometry system employing FSA is a useful alternative laboratory method for accurate and precise determination of burial dose rates at a significantly lower cost than high resolution gamma spectrometry.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"48 1","pages":"161 - 170"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of Full Spectrum Analysis to NaI(Tl) Gamma Spectrometry for the Determination of Burial Dose Rates\",\"authors\":\"Minqiang Bu, A. Murray, Myungho Kook, J. Buylaert, K. Thomsen\",\"doi\":\"10.2478/GEOCHR-2020-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we explored the potential of a NaI(Tl) scintillator-based gamma spectrometer for the accurate determination of burial dose rates in natural geological samples using a full spectrum analysis (FSA) approach. In this method, an iterative reweighted least-square regression is used to fit calibration standard spectra (40K, and 238U and 232Th series in equilibrium) to the sample spectrum, after subtraction of an appropriate background. The resulting minimum detection limits for 40K, 238U, and 232Th are 4.8, 0.4 and 0.3 Bq·kg−1, respectively (for a 0.23 kg sample); this is one order of magnitude lower than those obtained with the three-window approach previously reported by us, and well below the concentrations found in most natural sediments. These improved values are also comparable to those from high-resolution HPGe gamma spectrometry. Almost all activity concentrations of 40K, 238U, and 232Th from 20 measured natural samples differ by ≤5% from the high resolution spectrometry values; the average ratio of dose rates derived from our NaI(Tl) spectrometer to those from HPGe spectrometry is 0.993 ± 0.004 (n=20). We conclude that our scintillation spectrometry system employing FSA is a useful alternative laboratory method for accurate and precise determination of burial dose rates at a significantly lower cost than high resolution gamma spectrometry.\",\"PeriodicalId\":50421,\"journal\":{\"name\":\"Geochronometria\",\"volume\":\"48 1\",\"pages\":\"161 - 170\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochronometria\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2478/GEOCHR-2020-0009\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2478/GEOCHR-2020-0009","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
The Application of Full Spectrum Analysis to NaI(Tl) Gamma Spectrometry for the Determination of Burial Dose Rates
Abstract In this study, we explored the potential of a NaI(Tl) scintillator-based gamma spectrometer for the accurate determination of burial dose rates in natural geological samples using a full spectrum analysis (FSA) approach. In this method, an iterative reweighted least-square regression is used to fit calibration standard spectra (40K, and 238U and 232Th series in equilibrium) to the sample spectrum, after subtraction of an appropriate background. The resulting minimum detection limits for 40K, 238U, and 232Th are 4.8, 0.4 and 0.3 Bq·kg−1, respectively (for a 0.23 kg sample); this is one order of magnitude lower than those obtained with the three-window approach previously reported by us, and well below the concentrations found in most natural sediments. These improved values are also comparable to those from high-resolution HPGe gamma spectrometry. Almost all activity concentrations of 40K, 238U, and 232Th from 20 measured natural samples differ by ≤5% from the high resolution spectrometry values; the average ratio of dose rates derived from our NaI(Tl) spectrometer to those from HPGe spectrometry is 0.993 ± 0.004 (n=20). We conclude that our scintillation spectrometry system employing FSA is a useful alternative laboratory method for accurate and precise determination of burial dose rates at a significantly lower cost than high resolution gamma spectrometry.
期刊介绍:
Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.