{"title":"细胞大小有界的生长碎裂过程的强数定律","authors":"E. Horton, A. Watson","doi":"10.30757/ALEA.v19-68","DOIUrl":null,"url":null,"abstract":"Growth-fragmentation processes model systems of cells that grow continuously over time and then fragment into smaller pieces. Typically, on average, the number of cells in the system exhibits asynchronous exponential growth and, upon compensating for this, the distribution of cell sizes converges to an asymptotic profile. However, the long-term stochastic behaviour of the system is more delicate, and its almost sure asymptotics have been so far largely unexplored. In this article, we study a growth-fragmentation process whose cell sizes are bounded above, and prove the existence of regimes with differing almost sure long-term behaviour.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong laws of large numbers for a growth-fragmentation process with bounded cell sizes\",\"authors\":\"E. Horton, A. Watson\",\"doi\":\"10.30757/ALEA.v19-68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growth-fragmentation processes model systems of cells that grow continuously over time and then fragment into smaller pieces. Typically, on average, the number of cells in the system exhibits asynchronous exponential growth and, upon compensating for this, the distribution of cell sizes converges to an asymptotic profile. However, the long-term stochastic behaviour of the system is more delicate, and its almost sure asymptotics have been so far largely unexplored. In this article, we study a growth-fragmentation process whose cell sizes are bounded above, and prove the existence of regimes with differing almost sure long-term behaviour.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.v19-68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.v19-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strong laws of large numbers for a growth-fragmentation process with bounded cell sizes
Growth-fragmentation processes model systems of cells that grow continuously over time and then fragment into smaller pieces. Typically, on average, the number of cells in the system exhibits asynchronous exponential growth and, upon compensating for this, the distribution of cell sizes converges to an asymptotic profile. However, the long-term stochastic behaviour of the system is more delicate, and its almost sure asymptotics have been so far largely unexplored. In this article, we study a growth-fragmentation process whose cell sizes are bounded above, and prove the existence of regimes with differing almost sure long-term behaviour.