基于认知知识的学术适应性电子咨询系统模型

A. Al-Hunaiyyan, Andrew Thomas Bimba, Salah Alsharhan
{"title":"基于认知知识的学术适应性电子咨询系统模型","authors":"A. Al-Hunaiyyan, Andrew Thomas Bimba, Salah Alsharhan","doi":"10.28945/4633","DOIUrl":null,"url":null,"abstract":"Aim/Purpose This study describes a conceptual model, based on the principles of concept algebra that can provide intelligent academic advice using adaptive, knowledge-based feedback. The proposed model advises students based on their traits and academic history. The system aims to deliver adaptive advice to students using historical data from previous and current students. This data-driven approach utilizes a cognitive knowledge-based (CKB) model to update the weights (values that indicate the strength of relationships between concepts) that exist between student’s performances and recommended courses. Background A research study conducted at the Public Authority for Applied Education and Training (PAAET), a higher education institution in Kuwait, indicates that students’ have positive perceptions of the e-Advising system. Most students believe that PAAET’s e-Advising system is effective because it allows them to check their academic status, provides a clear vision of their academic timeline, and is a convenient, user-friendly, and attractive online service. Student advising can be a tedious element of academic life but is necessary to fill Adaptive e-Advising System 248 the gap between student performance and degree requirements. Higher education institutions have prioritized assisting undecided students with career decisions for decades. An important feature of e-Advising systems is personalized feedback, where tailored advice is provided based on students' characteristics and other external parameters. Previous e-Advising systems provide students with advice without taking into consideration their different attributes and goals. Methodology This research describes a model for an e-Advising system that enables students to select courses recommended based on their personalities and academic performance. Three algorithms are used to provide students with adaptive course selection advice: the knowledge elicitation algorithm that represents students' personalities and academic information, the knowledge bonding algorithm that combines related concepts or ideas within the knowledge base, and the adaptive e-Advising model that recommends relevant courses. The knowledge elicitation algorithm acquires student and academic characteristics from data provided, while the knowledge bonding algorithm fuses the newly acquired features with existing information in the database. The adaptive e-Advising algorithm provides recommended courses to students based on existing cognitive knowledge to overcome the issues associated with traditional knowledge representation methods. Contribution The design and implementation of an adaptive e-Advising system are challenging because it relies on both academic and student traits. A model that incorporates the conceptual interaction between the various academic and student-specific components is needed to manage these challenges. While other e-Advising systems provide students with general advice, these earlier models are too rudimentary to take student characteristics (e.g., knowledge level, learning style, performance, demographics) into consideration. For the online systems that have replaced face-to-face academic advising to be effective, they need to take into consideration the dynamic nature of contemporary students and academic settings. Findings The proposed algorithms can accommodate a highly diverse student body by providing information tailored to each student. The academic and student elements are represented as an Object-Attribute-Relationship (OAR) model. Recommendations for Practitioners The model proposed here provides insight into the potential relationships between students’ characteristics and their academic standing. Furthermore, this novel e-Advising system provides large quantities of data and a platform through which to query students, which should enable developing more effective, knowledge-based approaches to academic advising. Recommendation for Researchers The proposed model provides researches with a framework to incorporate various academic and student characteristics to determine the optimal advisory factors that affect a student’s performance. Impact on Society The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advice to students. The proposed approach can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to learning. Al-Hunaiyyan, Bimba, & Al-Sharhan 249 Future Research In future studies, the proposed algorithms will be implemented, and the adaptive e-Advising model will be tested on real-world data and then further improved to cater to specific academic settings. The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advisory to students. The approach proposed can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to course recommendation.","PeriodicalId":38962,"journal":{"name":"Interdisciplinary Journal of Information, Knowledge, and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Cognitive Knowledge-based Model for an Academic Adaptive e-Advising System\",\"authors\":\"A. Al-Hunaiyyan, Andrew Thomas Bimba, Salah Alsharhan\",\"doi\":\"10.28945/4633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim/Purpose This study describes a conceptual model, based on the principles of concept algebra that can provide intelligent academic advice using adaptive, knowledge-based feedback. The proposed model advises students based on their traits and academic history. The system aims to deliver adaptive advice to students using historical data from previous and current students. This data-driven approach utilizes a cognitive knowledge-based (CKB) model to update the weights (values that indicate the strength of relationships between concepts) that exist between student’s performances and recommended courses. Background A research study conducted at the Public Authority for Applied Education and Training (PAAET), a higher education institution in Kuwait, indicates that students’ have positive perceptions of the e-Advising system. Most students believe that PAAET’s e-Advising system is effective because it allows them to check their academic status, provides a clear vision of their academic timeline, and is a convenient, user-friendly, and attractive online service. Student advising can be a tedious element of academic life but is necessary to fill Adaptive e-Advising System 248 the gap between student performance and degree requirements. Higher education institutions have prioritized assisting undecided students with career decisions for decades. An important feature of e-Advising systems is personalized feedback, where tailored advice is provided based on students' characteristics and other external parameters. Previous e-Advising systems provide students with advice without taking into consideration their different attributes and goals. Methodology This research describes a model for an e-Advising system that enables students to select courses recommended based on their personalities and academic performance. Three algorithms are used to provide students with adaptive course selection advice: the knowledge elicitation algorithm that represents students' personalities and academic information, the knowledge bonding algorithm that combines related concepts or ideas within the knowledge base, and the adaptive e-Advising model that recommends relevant courses. The knowledge elicitation algorithm acquires student and academic characteristics from data provided, while the knowledge bonding algorithm fuses the newly acquired features with existing information in the database. The adaptive e-Advising algorithm provides recommended courses to students based on existing cognitive knowledge to overcome the issues associated with traditional knowledge representation methods. Contribution The design and implementation of an adaptive e-Advising system are challenging because it relies on both academic and student traits. A model that incorporates the conceptual interaction between the various academic and student-specific components is needed to manage these challenges. While other e-Advising systems provide students with general advice, these earlier models are too rudimentary to take student characteristics (e.g., knowledge level, learning style, performance, demographics) into consideration. For the online systems that have replaced face-to-face academic advising to be effective, they need to take into consideration the dynamic nature of contemporary students and academic settings. Findings The proposed algorithms can accommodate a highly diverse student body by providing information tailored to each student. The academic and student elements are represented as an Object-Attribute-Relationship (OAR) model. Recommendations for Practitioners The model proposed here provides insight into the potential relationships between students’ characteristics and their academic standing. Furthermore, this novel e-Advising system provides large quantities of data and a platform through which to query students, which should enable developing more effective, knowledge-based approaches to academic advising. Recommendation for Researchers The proposed model provides researches with a framework to incorporate various academic and student characteristics to determine the optimal advisory factors that affect a student’s performance. Impact on Society The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advice to students. The proposed approach can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to learning. Al-Hunaiyyan, Bimba, & Al-Sharhan 249 Future Research In future studies, the proposed algorithms will be implemented, and the adaptive e-Advising model will be tested on real-world data and then further improved to cater to specific academic settings. The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advisory to students. The approach proposed can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to course recommendation.\",\"PeriodicalId\":38962,\"journal\":{\"name\":\"Interdisciplinary Journal of Information, Knowledge, and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Journal of Information, Knowledge, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28945/4633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Journal of Information, Knowledge, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28945/4633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

所提出的模型将有利于电子咨询系统开发人员实现可更新的算法,这些算法可以进行测试和改进,为学生提供自适应咨询。所提出的方法可以为顾问提供关于学生特征和当前学术环境之间可能关系的新见解。因此,提供了一种开发新课程的方法和课程推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cognitive Knowledge-based Model for an Academic Adaptive e-Advising System
Aim/Purpose This study describes a conceptual model, based on the principles of concept algebra that can provide intelligent academic advice using adaptive, knowledge-based feedback. The proposed model advises students based on their traits and academic history. The system aims to deliver adaptive advice to students using historical data from previous and current students. This data-driven approach utilizes a cognitive knowledge-based (CKB) model to update the weights (values that indicate the strength of relationships between concepts) that exist between student’s performances and recommended courses. Background A research study conducted at the Public Authority for Applied Education and Training (PAAET), a higher education institution in Kuwait, indicates that students’ have positive perceptions of the e-Advising system. Most students believe that PAAET’s e-Advising system is effective because it allows them to check their academic status, provides a clear vision of their academic timeline, and is a convenient, user-friendly, and attractive online service. Student advising can be a tedious element of academic life but is necessary to fill Adaptive e-Advising System 248 the gap between student performance and degree requirements. Higher education institutions have prioritized assisting undecided students with career decisions for decades. An important feature of e-Advising systems is personalized feedback, where tailored advice is provided based on students' characteristics and other external parameters. Previous e-Advising systems provide students with advice without taking into consideration their different attributes and goals. Methodology This research describes a model for an e-Advising system that enables students to select courses recommended based on their personalities and academic performance. Three algorithms are used to provide students with adaptive course selection advice: the knowledge elicitation algorithm that represents students' personalities and academic information, the knowledge bonding algorithm that combines related concepts or ideas within the knowledge base, and the adaptive e-Advising model that recommends relevant courses. The knowledge elicitation algorithm acquires student and academic characteristics from data provided, while the knowledge bonding algorithm fuses the newly acquired features with existing information in the database. The adaptive e-Advising algorithm provides recommended courses to students based on existing cognitive knowledge to overcome the issues associated with traditional knowledge representation methods. Contribution The design and implementation of an adaptive e-Advising system are challenging because it relies on both academic and student traits. A model that incorporates the conceptual interaction between the various academic and student-specific components is needed to manage these challenges. While other e-Advising systems provide students with general advice, these earlier models are too rudimentary to take student characteristics (e.g., knowledge level, learning style, performance, demographics) into consideration. For the online systems that have replaced face-to-face academic advising to be effective, they need to take into consideration the dynamic nature of contemporary students and academic settings. Findings The proposed algorithms can accommodate a highly diverse student body by providing information tailored to each student. The academic and student elements are represented as an Object-Attribute-Relationship (OAR) model. Recommendations for Practitioners The model proposed here provides insight into the potential relationships between students’ characteristics and their academic standing. Furthermore, this novel e-Advising system provides large quantities of data and a platform through which to query students, which should enable developing more effective, knowledge-based approaches to academic advising. Recommendation for Researchers The proposed model provides researches with a framework to incorporate various academic and student characteristics to determine the optimal advisory factors that affect a student’s performance. Impact on Society The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advice to students. The proposed approach can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to learning. Al-Hunaiyyan, Bimba, & Al-Sharhan 249 Future Research In future studies, the proposed algorithms will be implemented, and the adaptive e-Advising model will be tested on real-world data and then further improved to cater to specific academic settings. The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advisory to students. The approach proposed can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to course recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
14
期刊最新文献
IJIKM Volume 18, 2023 – Table of Contents Factors Affecting Individuals’ Behavioral Intention to Use Online Capital Market Investment Platforms in Indonesia Investigating the Adoption of Social Commerce: A Case Study of SMEs in Jordan The Influence of Big Data Management on Organizational Performance in Organizations: The Role of Electronic Records Management System Potentiality Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1