石墨烯纳米片添加剂对柴油机性能影响的实验设计

Q2 Engineering Automotive Experiences Pub Date : 2022-09-29 DOI:10.31603/ae.6263
Sarbani Daud, M. A. Hamidi, R. Mamat
{"title":"石墨烯纳米片添加剂对柴油机性能影响的实验设计","authors":"Sarbani Daud, M. A. Hamidi, R. Mamat","doi":"10.31603/ae.6263","DOIUrl":null,"url":null,"abstract":"To minimise diesel exhaust emissions, a few methods are commonly used. Engine modifications, combustion optimisation, and exhaust system treatment components are among them. Fuel additives, such as zinc oxide, titanium oxide, aluminium oxide, and cerium oxide, are amongst the most effective methods to increase performance and reduce emissions. Even while positive performance and emission reduction outcomes have been demonstrated, there are worries concerning health toxicity effects. Carbon nanoparticles have been accepted as a fuel additive since they pose little risk to human health. A few studies have been undertaken to investigate the consequences of employing graphene nanoplatelets as fuel additives, thanks to advancements in graphene research. The findings of the study seemed encouraging. However, despite detecting the additive effects of graphene on performance, no more study has been undertaken to forecast the effects on engine performance. The objective of this study was to predict the effects of graphene nanoplatelets as an additive for diesel engines. The performance parameters of the trial were torque, power, BSFC, and BTE. Speed, load, and blend concentration are all considered in this model. Response surface methods and contour plotting with Minitab software were used to generate the prediction model. The results show that the prediction model is within 10% of the experimental data.","PeriodicalId":36133,"journal":{"name":"Automotive Experiences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Experiment to Predict the Effects of Graphene Nanoplatelets Addition to Diesel Engine Performance\",\"authors\":\"Sarbani Daud, M. A. Hamidi, R. Mamat\",\"doi\":\"10.31603/ae.6263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To minimise diesel exhaust emissions, a few methods are commonly used. Engine modifications, combustion optimisation, and exhaust system treatment components are among them. Fuel additives, such as zinc oxide, titanium oxide, aluminium oxide, and cerium oxide, are amongst the most effective methods to increase performance and reduce emissions. Even while positive performance and emission reduction outcomes have been demonstrated, there are worries concerning health toxicity effects. Carbon nanoparticles have been accepted as a fuel additive since they pose little risk to human health. A few studies have been undertaken to investigate the consequences of employing graphene nanoplatelets as fuel additives, thanks to advancements in graphene research. The findings of the study seemed encouraging. However, despite detecting the additive effects of graphene on performance, no more study has been undertaken to forecast the effects on engine performance. The objective of this study was to predict the effects of graphene nanoplatelets as an additive for diesel engines. The performance parameters of the trial were torque, power, BSFC, and BTE. Speed, load, and blend concentration are all considered in this model. Response surface methods and contour plotting with Minitab software were used to generate the prediction model. The results show that the prediction model is within 10% of the experimental data.\",\"PeriodicalId\":36133,\"journal\":{\"name\":\"Automotive Experiences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Experiences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31603/ae.6263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/ae.6263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了尽量减少柴油废气排放,通常使用几种方法。其中包括发动机改装、燃烧优化和排气系统处理组件。燃料添加剂,如氧化锌、氧化钛、氧化铝和氧化铈,是提高性能和减少排放的最有效方法之一。即使已显示出积极的业绩和减少排放的成果,但仍存在对健康毒性影响的担忧。碳纳米颗粒作为燃料添加剂已被接受,因为它们对人体健康的风险很小。由于石墨烯研究的进步,已经进行了一些研究,以调查使用石墨烯纳米片作为燃料添加剂的后果。这项研究的结果似乎令人鼓舞。然而,尽管检测到石墨烯对性能的加性影响,但尚未进行更多的研究来预测对发动机性能的影响。本研究的目的是预测石墨烯纳米片作为柴油发动机添加剂的效果。试验的性能参数为扭矩、功率、BSFC和BTE。该模型考虑了速度、负载和混合浓度。采用响应面法和Minitab软件进行等高线绘制,生成预测模型。结果表明,该预测模型与实验数据的误差在10%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Experiment to Predict the Effects of Graphene Nanoplatelets Addition to Diesel Engine Performance
To minimise diesel exhaust emissions, a few methods are commonly used. Engine modifications, combustion optimisation, and exhaust system treatment components are among them. Fuel additives, such as zinc oxide, titanium oxide, aluminium oxide, and cerium oxide, are amongst the most effective methods to increase performance and reduce emissions. Even while positive performance and emission reduction outcomes have been demonstrated, there are worries concerning health toxicity effects. Carbon nanoparticles have been accepted as a fuel additive since they pose little risk to human health. A few studies have been undertaken to investigate the consequences of employing graphene nanoplatelets as fuel additives, thanks to advancements in graphene research. The findings of the study seemed encouraging. However, despite detecting the additive effects of graphene on performance, no more study has been undertaken to forecast the effects on engine performance. The objective of this study was to predict the effects of graphene nanoplatelets as an additive for diesel engines. The performance parameters of the trial were torque, power, BSFC, and BTE. Speed, load, and blend concentration are all considered in this model. Response surface methods and contour plotting with Minitab software were used to generate the prediction model. The results show that the prediction model is within 10% of the experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automotive Experiences
Automotive Experiences Engineering-Automotive Engineering
CiteScore
3.00
自引率
0.00%
发文量
14
审稿时长
12 weeks
期刊最新文献
Mechanical Characteristics of Distributed Electric Wheel Loader in Shoveling Condition Enhancing Brake System Evaluation in Periodic Testing of Goods Transport Vehicles through FTA-FMEA Risk Analysis Justification of the Annual Program of the Transport Company Characteristics of Natural Fiber Composites Materials Reinforced with Aluminum and Copper Powder for The Performance of Automatic Motorcycle Clutch Pad Application of a PEM Fuel Cell Engine as a Small-Scale Power Generator for Small Cars with Different Fuel Concentrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1