{"title":"自然灾害中基于规则的人类影响预测模型——以PRED模型为例","authors":"Sara Rye, E. Aktas","doi":"10.3390/logistics7020031","DOIUrl":null,"url":null,"abstract":"Background: This paper proposes a framework to cope with the lack of data at the time of a disaster by employing predictive models. The framework can be used for disaster human impact assessment based on the socio-economic characteristics of the affected countries. Methods: A panel data of 4252 natural onset disasters between 1980 to 2020 is processed through concept drift phenomenon and rule-based classifiers, namely the Moving Average (MA). Results: Predictive model for Estimating Data (PRED) is developed as a decision-making platform based on the Disaster Severity Analysis (DSA) Technique. Conclusions: comparison with the real data shows that the platform can predict the human impact of a disaster (fatality, injured, homeless) with up to 3% error; thus, it is able to inform the selection of disaster relief partners for various disaster scenarios.","PeriodicalId":56264,"journal":{"name":"Logistics-Basel","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rule-Based Predictive Model for Estimating Human Impact Data in Natural Onset Disasters—The Case of a PRED Model\",\"authors\":\"Sara Rye, E. Aktas\",\"doi\":\"10.3390/logistics7020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: This paper proposes a framework to cope with the lack of data at the time of a disaster by employing predictive models. The framework can be used for disaster human impact assessment based on the socio-economic characteristics of the affected countries. Methods: A panel data of 4252 natural onset disasters between 1980 to 2020 is processed through concept drift phenomenon and rule-based classifiers, namely the Moving Average (MA). Results: Predictive model for Estimating Data (PRED) is developed as a decision-making platform based on the Disaster Severity Analysis (DSA) Technique. Conclusions: comparison with the real data shows that the platform can predict the human impact of a disaster (fatality, injured, homeless) with up to 3% error; thus, it is able to inform the selection of disaster relief partners for various disaster scenarios.\",\"PeriodicalId\":56264,\"journal\":{\"name\":\"Logistics-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logistics-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/logistics7020031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logistics-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/logistics7020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
A Rule-Based Predictive Model for Estimating Human Impact Data in Natural Onset Disasters—The Case of a PRED Model
Background: This paper proposes a framework to cope with the lack of data at the time of a disaster by employing predictive models. The framework can be used for disaster human impact assessment based on the socio-economic characteristics of the affected countries. Methods: A panel data of 4252 natural onset disasters between 1980 to 2020 is processed through concept drift phenomenon and rule-based classifiers, namely the Moving Average (MA). Results: Predictive model for Estimating Data (PRED) is developed as a decision-making platform based on the Disaster Severity Analysis (DSA) Technique. Conclusions: comparison with the real data shows that the platform can predict the human impact of a disaster (fatality, injured, homeless) with up to 3% error; thus, it is able to inform the selection of disaster relief partners for various disaster scenarios.