利用无人机技术开发农场实时监控框架

A. Oyelami, Adedayo Akinade, Kingsley Obianefo
{"title":"利用无人机技术开发农场实时监控框架","authors":"A. Oyelami, Adedayo Akinade, Kingsley Obianefo","doi":"10.11591/IJRA.V9I4.PP244-250","DOIUrl":null,"url":null,"abstract":"This work developed a cost-effective framework for agriculturists to regularly monitor their crops against intruding rodents and other security concerns using modern drone technology through configuration and deployment of an autonomous UAV which also functions as a remotely piloted vehicle. This was done by configuring a quadcopter capable of causing a disturbance when a rodent is observed through an inbuilt alarm system whose sound is amplified to be loud enough to cause the animals to leave the farm area. A framework for real-time image and live video transmission from the farm to a designated remote base station was developed. This was achieved through programming codes that configured the drone to operate an intelligent alarm and object tracking systems which enables a live feed from the UAV using Arduino IDE and Mission Planner for autonomous flight control. The requisite algorithms were developed using the framework of tracking, learning and detection (TLD) in the OpenCV software. The drone movement is equally controlled remotely over a Wi-Fi network using an ESP8266 Wi-Fi module for redirection and controlling of the drone movement to monitor specific locations.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a real-time framework for farm monitoring using drone technology\",\"authors\":\"A. Oyelami, Adedayo Akinade, Kingsley Obianefo\",\"doi\":\"10.11591/IJRA.V9I4.PP244-250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work developed a cost-effective framework for agriculturists to regularly monitor their crops against intruding rodents and other security concerns using modern drone technology through configuration and deployment of an autonomous UAV which also functions as a remotely piloted vehicle. This was done by configuring a quadcopter capable of causing a disturbance when a rodent is observed through an inbuilt alarm system whose sound is amplified to be loud enough to cause the animals to leave the farm area. A framework for real-time image and live video transmission from the farm to a designated remote base station was developed. This was achieved through programming codes that configured the drone to operate an intelligent alarm and object tracking systems which enables a live feed from the UAV using Arduino IDE and Mission Planner for autonomous flight control. The requisite algorithms were developed using the framework of tracking, learning and detection (TLD) in the OpenCV software. The drone movement is equally controlled remotely over a Wi-Fi network using an ESP8266 Wi-Fi module for redirection and controlling of the drone movement to monitor specific locations.\",\"PeriodicalId\":73286,\"journal\":{\"name\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJRA.V9I4.PP244-250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJRA.V9I4.PP244-250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作为农民开发了一个具有成本效益的框架,通过配置和部署自动无人机(也可作为远程驾驶车辆),利用现代无人机技术定期监测他们的作物,防止啮齿动物入侵和其他安全问题。这是通过配置一架四轴飞行器来完成的,当通过内置的警报系统观察到啮齿动物时,该警报系统的声音被放大到足以使动物离开农场区域。制定了从农场向指定的远程基站传输实时图像和实况视频的框架。这是通过编程代码实现的,该代码配置无人机运行智能报警和对象跟踪系统,该系统使用Arduino IDE和任务规划器实现无人机的实时馈送,以进行自主飞行控制。利用OpenCV软件中的跟踪、学习和检测(TLD)框架开发了所需的算法。无人机运动同样通过Wi-Fi网络远程控制,使用ESP8266 Wi-Fi模块进行重定向和控制无人机运动,以监视特定位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a real-time framework for farm monitoring using drone technology
This work developed a cost-effective framework for agriculturists to regularly monitor their crops against intruding rodents and other security concerns using modern drone technology through configuration and deployment of an autonomous UAV which also functions as a remotely piloted vehicle. This was done by configuring a quadcopter capable of causing a disturbance when a rodent is observed through an inbuilt alarm system whose sound is amplified to be loud enough to cause the animals to leave the farm area. A framework for real-time image and live video transmission from the farm to a designated remote base station was developed. This was achieved through programming codes that configured the drone to operate an intelligent alarm and object tracking systems which enables a live feed from the UAV using Arduino IDE and Mission Planner for autonomous flight control. The requisite algorithms were developed using the framework of tracking, learning and detection (TLD) in the OpenCV software. The drone movement is equally controlled remotely over a Wi-Fi network using an ESP8266 Wi-Fi module for redirection and controlling of the drone movement to monitor specific locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Towards a Unified Approach for Continuously-Variable Impedance Control of Powered Prosthetic Legs over Walking Speeds and Inclines. Cooperative vs. Teleoperation Control of the Steady Hand Eye Robot with Adaptive Sclera Force Control: A Comparative Study. Bevel-Tip Needle Deflection Modeling, Simulation, and Validation in Multi-Layer Tissues. Exploring the Needle Tip Interaction Force with Retinal Tissue Deformation in Vitreoretinal Surgery. Fully Distributed Shape Sensing of a Flexible Surgical Needle Using Optical Frequency Domain Reflectometry for Prostate Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1