{"title":"具有潜在错误的擦除编码存储系统的可靠性评估","authors":"I. Iliadis","doi":"10.1145/3568313","DOIUrl":null,"url":null,"abstract":"Large-scale storage systems employ erasure-coding redundancy schemes to protect against device failures. The adverse effect of latent sector errors on the Mean Time to Data Loss (MTTDL) and the Expected Annual Fraction of Data Loss (EAFDL) reliability metrics is evaluated. A theoretical model capturing the effect of latent errors and device failures is developed, and closed-form expressions for the metrics of interest are derived. The MTTDL and EAFDL of erasure-coded systems are obtained analytically for (i) the entire range of bit error rates; (ii) the symmetric, clustered, and declustered data placement schemes; and (iii) arbitrary device failure and rebuild time distributions under network rebuild bandwidth constraints. The range of error rates that deteriorate system reliability is derived analytically. For realistic values of sector error rates, the results obtained demonstrate that MTTDL degrades, whereas, for moderate erasure codes, EAFDL remains practically unaffected. It is demonstrated that, in the range of typical sector error rates and for very powerful erasure codes, EAFDL degrades as well. It is also shown that the declustered data placement scheme offers superior reliability.","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"19 1","pages":"1 - 47"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors\",\"authors\":\"I. Iliadis\",\"doi\":\"10.1145/3568313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale storage systems employ erasure-coding redundancy schemes to protect against device failures. The adverse effect of latent sector errors on the Mean Time to Data Loss (MTTDL) and the Expected Annual Fraction of Data Loss (EAFDL) reliability metrics is evaluated. A theoretical model capturing the effect of latent errors and device failures is developed, and closed-form expressions for the metrics of interest are derived. The MTTDL and EAFDL of erasure-coded systems are obtained analytically for (i) the entire range of bit error rates; (ii) the symmetric, clustered, and declustered data placement schemes; and (iii) arbitrary device failure and rebuild time distributions under network rebuild bandwidth constraints. The range of error rates that deteriorate system reliability is derived analytically. For realistic values of sector error rates, the results obtained demonstrate that MTTDL degrades, whereas, for moderate erasure codes, EAFDL remains practically unaffected. It is demonstrated that, in the range of typical sector error rates and for very powerful erasure codes, EAFDL degrades as well. It is also shown that the declustered data placement scheme offers superior reliability.\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"19 1\",\"pages\":\"1 - 47\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3568313\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3568313","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors
Large-scale storage systems employ erasure-coding redundancy schemes to protect against device failures. The adverse effect of latent sector errors on the Mean Time to Data Loss (MTTDL) and the Expected Annual Fraction of Data Loss (EAFDL) reliability metrics is evaluated. A theoretical model capturing the effect of latent errors and device failures is developed, and closed-form expressions for the metrics of interest are derived. The MTTDL and EAFDL of erasure-coded systems are obtained analytically for (i) the entire range of bit error rates; (ii) the symmetric, clustered, and declustered data placement schemes; and (iii) arbitrary device failure and rebuild time distributions under network rebuild bandwidth constraints. The range of error rates that deteriorate system reliability is derived analytically. For realistic values of sector error rates, the results obtained demonstrate that MTTDL degrades, whereas, for moderate erasure codes, EAFDL remains practically unaffected. It is demonstrated that, in the range of typical sector error rates and for very powerful erasure codes, EAFDL degrades as well. It is also shown that the declustered data placement scheme offers superior reliability.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.