间歇氯化改变了反渗透膜上的海洋生物膜群

IF 0.8 4区 工程技术 Q4 ENGINEERING, CHEMICAL Membrane Water Treatment Pub Date : 2019-11-01 DOI:10.12989/MWT.2019.10.6.395
Dawoon Jeong, Chang-Ha Lee, Seockheon Lee, Hyokwan Bae
{"title":"间歇氯化改变了反渗透膜上的海洋生物膜群","authors":"Dawoon Jeong, Chang-Ha Lee, Seockheon Lee, Hyokwan Bae","doi":"10.12989/MWT.2019.10.6.395","DOIUrl":null,"url":null,"abstract":"The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with 0.2 mg-Cl2/L chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg Cl2/L). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"10 1","pages":"395-404"},"PeriodicalIF":0.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes\",\"authors\":\"Dawoon Jeong, Chang-Ha Lee, Seockheon Lee, Hyokwan Bae\",\"doi\":\"10.12989/MWT.2019.10.6.395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with 0.2 mg-Cl2/L chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg Cl2/L). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.\",\"PeriodicalId\":18416,\"journal\":{\"name\":\"Membrane Water Treatment\",\"volume\":\"10 1\",\"pages\":\"395-404\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane Water Treatment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/MWT.2019.10.6.395\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2019.10.6.395","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 5

摘要

研究了氯对海洋细菌群落的影响。非氯适应海洋细菌群落(NCAM)和氯适应海洋细菌群落(CAM, 0.2 mg-Cl2/L氯处理细菌群落)培养1个月。NCAM与CAM之间存在明显差异,两者仅共享8个操作分类单元(operational taxonomic units, otu),占已识别otu总数的13.1%。这一结果表明氯对海洋细菌群落的变化负有责任。水基单胞菌是一种耐氯的海洋细菌。研究了不同氯浓度(0、0.2、0.4、0.6和0.8 mg Cl2/L)间歇氯化对反渗透(RO)膜表面形成的两种海洋生物膜群落的影响。虽然在7周的时间里,反渗透膜上附着的海洋细菌的平均数量随着氯浓度的增加而减少,但在整个实验过程中,消毒效率呈现出较大的波动。这是由于间歇氯化过程中氯的消耗。这些结果表明,间歇氯化不是控制生物膜形成的有效消毒策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes
The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with 0.2 mg-Cl2/L chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg Cl2/L). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membrane Water Treatment
Membrane Water Treatment ENGINEERING, CHEMICAL-WATER RESOURCES
CiteScore
1.90
自引率
30.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.
期刊最新文献
Modeling of biofilm growth and the related changes in hydraulic properties of porous media fMWNTs/GO/MnO2 nanocomposites as additives in a membrane for the removal of crystal violet Prioritizing water distribution pipe renewal based on seismic risk and construction cost Comparison of pollutants in stormwater runoff from asphalt and concrete roads Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1