酱香型白酒发酵过程中乳酸菌的多样性

IF 1.8 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food Biotechnology Pub Date : 2020-07-02 DOI:10.1080/08905436.2020.1789475
Yaoling Wu, Fei Hao, Xibin Lv, Biduan Chen, Yubo Yang, Xianglian Zeng, Fan Yang, Heyu Wang, Li Wang
{"title":"酱香型白酒发酵过程中乳酸菌的多样性","authors":"Yaoling Wu, Fei Hao, Xibin Lv, Biduan Chen, Yubo Yang, Xianglian Zeng, Fan Yang, Heyu Wang, Li Wang","doi":"10.1080/08905436.2020.1789475","DOIUrl":null,"url":null,"abstract":"ABSTRACT Maotai-flavor liquor, derived from a multi-stage solid fermentation process, is one of the most popular liquors in China. Its quality and flavor are closely related to diverse lactic acid bacteria (LAB). It is therefore significant to characterize LAB for the manufacturing of Maotai-flavor liquor. In this study, LAB in solid state fermentation stages were analyzed through high-throughput sequencing and cultivation-dependent methods during the fermentation process. In total, 65 LAB species were identified in the fermented matrix, showing a much higher LAB diversity than other types of Chinese liquor. In addition, discrepancies were found to exist in the dominant LAB community structures during different fermentation stages, and strains of the Lactobacillus genus were found to be the most dominant LAB. Furthermore, 33 LAB species were identified from the fermentation matrix through the cultivation and 16 S rRNA analysis of single isolates, thus representing 50.8% coverage of the detected LAB species. The relative abundance of isolated LAB in the total abundance of LAB was 95.9% during the fermentation process. In doing so, Lac2 and Lac13, two potentially new LAB species, were isolated. To the best of our knowledge, this study represents the identification of the highest number of LAB species by cultivation-dependent methods from fermented grains of Chinese liquor. In summary, this study monitored the LAB species composition of solid fermented matrix during the fermentation of Maotai-flavor liquor and has highlighted the potential importance of the higher abundance of LAB and the effect it has on the unique flavor of Maotai liquor.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"34 1","pages":"212 - 227"},"PeriodicalIF":1.8000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08905436.2020.1789475","citationCount":"8","resultStr":"{\"title\":\"Diversity of lactic acid bacteria in Moutai-flavor liquor fermentation process\",\"authors\":\"Yaoling Wu, Fei Hao, Xibin Lv, Biduan Chen, Yubo Yang, Xianglian Zeng, Fan Yang, Heyu Wang, Li Wang\",\"doi\":\"10.1080/08905436.2020.1789475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Maotai-flavor liquor, derived from a multi-stage solid fermentation process, is one of the most popular liquors in China. Its quality and flavor are closely related to diverse lactic acid bacteria (LAB). It is therefore significant to characterize LAB for the manufacturing of Maotai-flavor liquor. In this study, LAB in solid state fermentation stages were analyzed through high-throughput sequencing and cultivation-dependent methods during the fermentation process. In total, 65 LAB species were identified in the fermented matrix, showing a much higher LAB diversity than other types of Chinese liquor. In addition, discrepancies were found to exist in the dominant LAB community structures during different fermentation stages, and strains of the Lactobacillus genus were found to be the most dominant LAB. Furthermore, 33 LAB species were identified from the fermentation matrix through the cultivation and 16 S rRNA analysis of single isolates, thus representing 50.8% coverage of the detected LAB species. The relative abundance of isolated LAB in the total abundance of LAB was 95.9% during the fermentation process. In doing so, Lac2 and Lac13, two potentially new LAB species, were isolated. To the best of our knowledge, this study represents the identification of the highest number of LAB species by cultivation-dependent methods from fermented grains of Chinese liquor. In summary, this study monitored the LAB species composition of solid fermented matrix during the fermentation of Maotai-flavor liquor and has highlighted the potential importance of the higher abundance of LAB and the effect it has on the unique flavor of Maotai liquor.\",\"PeriodicalId\":12347,\"journal\":{\"name\":\"Food Biotechnology\",\"volume\":\"34 1\",\"pages\":\"212 - 227\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08905436.2020.1789475\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/08905436.2020.1789475\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2020.1789475","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

摘要酱香型白酒是中国最受欢迎的白酒之一,它采用多级固体发酵工艺。其品质和风味与多种乳酸菌密切相关。因此,实验室表征对酱香型白酒的生产具有重要意义。在本研究中,通过高通量测序和发酵过程中的培养依赖性方法分析了固态发酵阶段的LAB。在发酵基质中总共鉴定出65种LAB,显示出比其他类型的中国白酒高得多的LAB多样性。此外,在不同的发酵阶段,优势乳酸菌群落结构存在差异,乳杆菌属菌株是最具优势的乳酸菌。此外,通过培养和单个分离株的16S rRNA分析,从发酵基质中鉴定出33种乳酸菌,从而代表所检测到的LAB物种的50.8%的覆盖率。在发酵过程中,分离的LAB在LAB总丰度中的相对丰度为95.9%。在这样做的过程中,Lac2和Lac13这两个潜在的新LAB物种被分离出来。据我们所知,本研究代表了通过依赖培养的方法从中国白酒发酵颗粒中鉴定出最高数量的LAB物种。总之,本研究监测了酱香型白酒发酵过程中固体发酵基质中LAB的物种组成,并强调了较高LAB丰度的潜在重要性及其对酱香型酒独特风味的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diversity of lactic acid bacteria in Moutai-flavor liquor fermentation process
ABSTRACT Maotai-flavor liquor, derived from a multi-stage solid fermentation process, is one of the most popular liquors in China. Its quality and flavor are closely related to diverse lactic acid bacteria (LAB). It is therefore significant to characterize LAB for the manufacturing of Maotai-flavor liquor. In this study, LAB in solid state fermentation stages were analyzed through high-throughput sequencing and cultivation-dependent methods during the fermentation process. In total, 65 LAB species were identified in the fermented matrix, showing a much higher LAB diversity than other types of Chinese liquor. In addition, discrepancies were found to exist in the dominant LAB community structures during different fermentation stages, and strains of the Lactobacillus genus were found to be the most dominant LAB. Furthermore, 33 LAB species were identified from the fermentation matrix through the cultivation and 16 S rRNA analysis of single isolates, thus representing 50.8% coverage of the detected LAB species. The relative abundance of isolated LAB in the total abundance of LAB was 95.9% during the fermentation process. In doing so, Lac2 and Lac13, two potentially new LAB species, were isolated. To the best of our knowledge, this study represents the identification of the highest number of LAB species by cultivation-dependent methods from fermented grains of Chinese liquor. In summary, this study monitored the LAB species composition of solid fermented matrix during the fermentation of Maotai-flavor liquor and has highlighted the potential importance of the higher abundance of LAB and the effect it has on the unique flavor of Maotai liquor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Biotechnology
Food Biotechnology 工程技术-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production. Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published. Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.
期刊最新文献
A Novel β-Galactosidase from Kluyvera intermedia and its Potential for Hydrolyzing Lactose in Milk Characterization of Probiotic Potential Lactic Acid Bacteria Isolated from Chinese Cabbage Brassica rapa subsp. Pekinensis Comprehensive in vitro and in silico Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum strain LFN10 Differentiation of Saccharomyces boulardii from Saccharomyces cerevisiae Strains Using the qPCR-HRM Technique Targeting AAD15 Gene Limosilactobacillus fermentum MYSY8, a Potential Probiotic Isolate from Fermented Rice Beverage for the Control of Microsporum canis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1