Shucheng Dong, Fucheng Qiu, Peng Lei, Tuo Cheng, G. Ma, Lijie Qu, O. Ivasishin
{"title":"钛粉压实方程的评价及参数分析","authors":"Shucheng Dong, Fucheng Qiu, Peng Lei, Tuo Cheng, G. Ma, Lijie Qu, O. Ivasishin","doi":"10.1080/00325899.2021.1973654","DOIUrl":null,"url":null,"abstract":"ABSTRACT Titanium is widely used in the fields of medicine, industry, and biological science due to its excellent properties. In addition, titanium powder metallurgy (PM) is widely used in production because it could considerably reduce the cost. The most critical step in PM is powder compaction. Thus, the compaction equation is highly important in the prediction and analysis of powder compaction process. In this paper, the experimental data of titanium hydride powder and hydrogenated-dehydrogenated titanium powder were fitted using different compaction equations, and all the equations could obtain a high fitting degree (R 2 > 0.99) and a small error. The linear compaction equation could distinguish the powder type and different particle size distribution forms in the same type of powder through fitting parameters. The nonlinear compaction fitting equation could also analyse the contribution of powder densification mechanism through parameter calculation.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"65 1","pages":"181 - 199"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation and parameter analysis of compaction equations applied to titanium powder\",\"authors\":\"Shucheng Dong, Fucheng Qiu, Peng Lei, Tuo Cheng, G. Ma, Lijie Qu, O. Ivasishin\",\"doi\":\"10.1080/00325899.2021.1973654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Titanium is widely used in the fields of medicine, industry, and biological science due to its excellent properties. In addition, titanium powder metallurgy (PM) is widely used in production because it could considerably reduce the cost. The most critical step in PM is powder compaction. Thus, the compaction equation is highly important in the prediction and analysis of powder compaction process. In this paper, the experimental data of titanium hydride powder and hydrogenated-dehydrogenated titanium powder were fitted using different compaction equations, and all the equations could obtain a high fitting degree (R 2 > 0.99) and a small error. The linear compaction equation could distinguish the powder type and different particle size distribution forms in the same type of powder through fitting parameters. The nonlinear compaction fitting equation could also analyse the contribution of powder densification mechanism through parameter calculation.\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":\"65 1\",\"pages\":\"181 - 199\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2021.1973654\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2021.1973654","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Evaluation and parameter analysis of compaction equations applied to titanium powder
ABSTRACT Titanium is widely used in the fields of medicine, industry, and biological science due to its excellent properties. In addition, titanium powder metallurgy (PM) is widely used in production because it could considerably reduce the cost. The most critical step in PM is powder compaction. Thus, the compaction equation is highly important in the prediction and analysis of powder compaction process. In this paper, the experimental data of titanium hydride powder and hydrogenated-dehydrogenated titanium powder were fitted using different compaction equations, and all the equations could obtain a high fitting degree (R 2 > 0.99) and a small error. The linear compaction equation could distinguish the powder type and different particle size distribution forms in the same type of powder through fitting parameters. The nonlinear compaction fitting equation could also analyse the contribution of powder densification mechanism through parameter calculation.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.