间歇式反应器和连续流微反应器中深度共晶溶剂下果糖合成5-羟甲基糠醛

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Flow Chemistry Pub Date : 2023-02-15 DOI:10.1007/s41981-023-00262-4
Chencong Ruan, Hero Jan Heeres, Jun Yue
{"title":"间歇式反应器和连续流微反应器中深度共晶溶剂下果糖合成5-羟甲基糠醛","authors":"Chencong Ruan,&nbsp;Hero Jan Heeres,&nbsp;Jun Yue","doi":"10.1007/s41981-023-00262-4","DOIUrl":null,"url":null,"abstract":"<p>In this work, a deep eutectic solvent (DES) composed of choline chloride (ChCl) and ethylene glycol (EG) was prepared and applied for the conversion of fructose to 5-hydroxymethylfurfural (HMF), catalyzed by HCl in both laboratory batch reactors and continuous flow microreactors. The effects of reaction temperature, batch time, catalyst loading and molar ratio of ChCl to EG on the fructose conversion and HMF yield were first investigated in the monophasic batch system of ChCl/EG DES. To inhibit HMF-involved side reactions (e.g., its polymerization to humins), methyl isobutyl ketone (MIBK) was used as the extraction agent to form a biphasic system with DES in batch reactors. As a result, the maximum HMF yield could be enhanced at an MIBK to DES volume ratio of 3:1, e.g., increased from 48% in the monophasic DES (with a molar ratio ChCl to EG at 1:3) to 63% in the biphasic system at 80°C and 5 mol% of HCl loading. Based on the optimized results in batch reactors, biphasic experiments were conducted in capillary microreactors under slug flow operation, where a maximum HMF yield of <i>ca.</i> 61% could be obtained in 13 min, which is similar to that in batch under otherwise the same conditions. The slight mass transfer limitation in microreactors was confirmed by performing experiments with microreactors of varying length, and comparing the characteristic mass transfer time and reaction time, indicating further room for improvement.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 2","pages":"155 - 168"},"PeriodicalIF":2.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-023-00262-4.pdf","citationCount":"3","resultStr":"{\"title\":\"5-Hydroxymethylfurfural synthesis from fructose over deep eutectic solvents in batch reactors and continuous flow microreactors\",\"authors\":\"Chencong Ruan,&nbsp;Hero Jan Heeres,&nbsp;Jun Yue\",\"doi\":\"10.1007/s41981-023-00262-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a deep eutectic solvent (DES) composed of choline chloride (ChCl) and ethylene glycol (EG) was prepared and applied for the conversion of fructose to 5-hydroxymethylfurfural (HMF), catalyzed by HCl in both laboratory batch reactors and continuous flow microreactors. The effects of reaction temperature, batch time, catalyst loading and molar ratio of ChCl to EG on the fructose conversion and HMF yield were first investigated in the monophasic batch system of ChCl/EG DES. To inhibit HMF-involved side reactions (e.g., its polymerization to humins), methyl isobutyl ketone (MIBK) was used as the extraction agent to form a biphasic system with DES in batch reactors. As a result, the maximum HMF yield could be enhanced at an MIBK to DES volume ratio of 3:1, e.g., increased from 48% in the monophasic DES (with a molar ratio ChCl to EG at 1:3) to 63% in the biphasic system at 80°C and 5 mol% of HCl loading. Based on the optimized results in batch reactors, biphasic experiments were conducted in capillary microreactors under slug flow operation, where a maximum HMF yield of <i>ca.</i> 61% could be obtained in 13 min, which is similar to that in batch under otherwise the same conditions. The slight mass transfer limitation in microreactors was confirmed by performing experiments with microreactors of varying length, and comparing the characteristic mass transfer time and reaction time, indicating further room for improvement.</p>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"13 2\",\"pages\":\"155 - 168\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41981-023-00262-4.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-023-00262-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00262-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文制备了一种由氯化胆碱(ChCl)和乙二醇(EG)组成的深度共晶溶剂(DES),并在实验室间歇式反应器和连续流微反应器中由HCl催化将果糖转化为5-羟甲基糠醛(HMF)。在ChCl/EG双相间歇反应体系中,研究了反应温度、间歇反应时间、催化剂用量、ChCl与EG的摩尔比等因素对果糖转化率和HMF产率的影响,并以甲基异丁基酮(MIBK)为萃取剂,在间歇反应体系中与DES形成双相体系,以抑制HMF参与的副反应(如聚合成人类碱)。结果表明,当MIBK与DES的体积比为3:1时,最大HMF收率可以提高,即从单相DES (ChCl与EG的摩尔比为1:3)的48%提高到80°C和5 mol% HCl负载的双相体系的63%。在间歇反应器优化结果的基础上,在段塞流操作下,在毛细管微反应器中进行了两相实验,在13 min内可获得最大的HMF收率约为61%,与其他相同条件下的间歇反应器相似。通过对不同长度的微反应器进行实验,并比较特征传质时间和反应时间,证实了微反应器的轻微传质限制,指出了进一步改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5-Hydroxymethylfurfural synthesis from fructose over deep eutectic solvents in batch reactors and continuous flow microreactors

In this work, a deep eutectic solvent (DES) composed of choline chloride (ChCl) and ethylene glycol (EG) was prepared and applied for the conversion of fructose to 5-hydroxymethylfurfural (HMF), catalyzed by HCl in both laboratory batch reactors and continuous flow microreactors. The effects of reaction temperature, batch time, catalyst loading and molar ratio of ChCl to EG on the fructose conversion and HMF yield were first investigated in the monophasic batch system of ChCl/EG DES. To inhibit HMF-involved side reactions (e.g., its polymerization to humins), methyl isobutyl ketone (MIBK) was used as the extraction agent to form a biphasic system with DES in batch reactors. As a result, the maximum HMF yield could be enhanced at an MIBK to DES volume ratio of 3:1, e.g., increased from 48% in the monophasic DES (with a molar ratio ChCl to EG at 1:3) to 63% in the biphasic system at 80°C and 5 mol% of HCl loading. Based on the optimized results in batch reactors, biphasic experiments were conducted in capillary microreactors under slug flow operation, where a maximum HMF yield of ca. 61% could be obtained in 13 min, which is similar to that in batch under otherwise the same conditions. The slight mass transfer limitation in microreactors was confirmed by performing experiments with microreactors of varying length, and comparing the characteristic mass transfer time and reaction time, indicating further room for improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
期刊最新文献
Rapid and practical synthesis of N-protected amino ketones in continuous flow via pre-deprotonation protocol Expedited access to β-lactams via a telescoped three-component Staudinger reaction in flow Efficient “One-Column” grignard generation and reaction in continuous flow Two deep learning methods in comparison to characterize droplet sizes in emulsification flow processes Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1