{"title":"用特征选择检验职业成熟度与多因素关系","authors":"Shuxing Zhang, Qinneng Xu","doi":"10.5121/csit.2020.101703","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to investigate the relationship between career maturity and a branch of factors among senior school students. The sample data were collected from a total of 189 students. The linear relationship between career maturity and 72 factors were tested by using feature selection methods. LASSO and forward stepwise were compared based on crossvalidation. The results showed that LASSO was a feasible method to select the significant factors, and 12 of the total 72 factors were found to be important in predicting career maturity.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Examination of Relationship between Career Maturity and Multiple Factors by Feature Selection\",\"authors\":\"Shuxing Zhang, Qinneng Xu\",\"doi\":\"10.5121/csit.2020.101703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to investigate the relationship between career maturity and a branch of factors among senior school students. The sample data were collected from a total of 189 students. The linear relationship between career maturity and 72 factors were tested by using feature selection methods. LASSO and forward stepwise were compared based on crossvalidation. The results showed that LASSO was a feasible method to select the significant factors, and 12 of the total 72 factors were found to be important in predicting career maturity.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2020.101703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.101703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Examination of Relationship between Career Maturity and Multiple Factors by Feature Selection
The purpose of this study is to investigate the relationship between career maturity and a branch of factors among senior school students. The sample data were collected from a total of 189 students. The linear relationship between career maturity and 72 factors were tested by using feature selection methods. LASSO and forward stepwise were compared based on crossvalidation. The results showed that LASSO was a feasible method to select the significant factors, and 12 of the total 72 factors were found to be important in predicting career maturity.