Humbang Purba, Awali Priyono, Wahyu Triyoso, Mochamad Apri
{"title":"利用Levin t变换提高大偏移量下扩展各向异性斜向方程的精度","authors":"Humbang Purba, Awali Priyono, Wahyu Triyoso, Mochamad Apri","doi":"10.1007/s11200-020-0610-3","DOIUrl":null,"url":null,"abstract":"<p>In an anisotropic model, traveltime can be determined approximately by numerical solution of the eikonal equation in terms of an anellipticity parameter η, using perturbation theory. However, its accuracy decreases under the effect of strong anisotropy at larger offsets. It becomes invalid for determining normal moveout velocity and anellipticity parameter in seismic processing. We propose a new approach using Levin T-transformation to transform the expanded traveltime in the transversely isotropic medium with vertical axis of symmetry (VTI) into rational form. The objective of this study is to provide a new traveltime approximation that is more accurate at larger offsets. In this study, we derive Levin algorithm and determine the optimal value of Levin parameters, which is a key step in achieving better accuracy. In a numerical experiment, we compare the accuracy between Levin T-transformation and second sequence of Shanks transformation in a homogeneous VTI medium. We also implement both approximations in a velocity analysis and stacking traces using synthetic common midpoint gathers on a multilayer earth model. The proposed method shows a superiority in accuracy to existing methods over a range of offsets with offset-to-depth ratio up to 6 and anellipticity parameter 0–0.5.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"64 3","pages":"349 - 372"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-020-0610-3","citationCount":"1","resultStr":"{\"title\":\"Improving the accuracy of the expanded anisotropic eikonal equation at larger offsets using Levin T-transformation\",\"authors\":\"Humbang Purba, Awali Priyono, Wahyu Triyoso, Mochamad Apri\",\"doi\":\"10.1007/s11200-020-0610-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an anisotropic model, traveltime can be determined approximately by numerical solution of the eikonal equation in terms of an anellipticity parameter η, using perturbation theory. However, its accuracy decreases under the effect of strong anisotropy at larger offsets. It becomes invalid for determining normal moveout velocity and anellipticity parameter in seismic processing. We propose a new approach using Levin T-transformation to transform the expanded traveltime in the transversely isotropic medium with vertical axis of symmetry (VTI) into rational form. The objective of this study is to provide a new traveltime approximation that is more accurate at larger offsets. In this study, we derive Levin algorithm and determine the optimal value of Levin parameters, which is a key step in achieving better accuracy. In a numerical experiment, we compare the accuracy between Levin T-transformation and second sequence of Shanks transformation in a homogeneous VTI medium. We also implement both approximations in a velocity analysis and stacking traces using synthetic common midpoint gathers on a multilayer earth model. The proposed method shows a superiority in accuracy to existing methods over a range of offsets with offset-to-depth ratio up to 6 and anellipticity parameter 0–0.5.</p>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"64 3\",\"pages\":\"349 - 372\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11200-020-0610-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-020-0610-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-020-0610-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Improving the accuracy of the expanded anisotropic eikonal equation at larger offsets using Levin T-transformation
In an anisotropic model, traveltime can be determined approximately by numerical solution of the eikonal equation in terms of an anellipticity parameter η, using perturbation theory. However, its accuracy decreases under the effect of strong anisotropy at larger offsets. It becomes invalid for determining normal moveout velocity and anellipticity parameter in seismic processing. We propose a new approach using Levin T-transformation to transform the expanded traveltime in the transversely isotropic medium with vertical axis of symmetry (VTI) into rational form. The objective of this study is to provide a new traveltime approximation that is more accurate at larger offsets. In this study, we derive Levin algorithm and determine the optimal value of Levin parameters, which is a key step in achieving better accuracy. In a numerical experiment, we compare the accuracy between Levin T-transformation and second sequence of Shanks transformation in a homogeneous VTI medium. We also implement both approximations in a velocity analysis and stacking traces using synthetic common midpoint gathers on a multilayer earth model. The proposed method shows a superiority in accuracy to existing methods over a range of offsets with offset-to-depth ratio up to 6 and anellipticity parameter 0–0.5.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.