微结构壁面上盐水溶液非等温蒸发时的自由溶液对流

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2018-11-27 DOI:10.1080/15567265.2018.1551448
S. Misyura
{"title":"微结构壁面上盐水溶液非等温蒸发时的自由溶液对流","authors":"S. Misyura","doi":"10.1080/15567265.2018.1551448","DOIUrl":null,"url":null,"abstract":"ABSTRACT Evaporation and heat transfer of layers of aqueous salt solutions have been studied. The behavior of salt solutions is compared for a smooth and micro-structured wall with a rectangular profile. The evaporation rate of the salt solution on the structured wall is 20–30% higher than on the smooth one at high salt concentration. Previously, it was thought that the heat transfer for solutions can be calculated for thin layers and films without taking into account the natural convection in liquid. In this paper, the liquid free convection is shown to play a key role. A simple model linking the solutal and the thermal Marangoni numbers and the Peclet number with free convection of the liquid on a hot structured wall is considered. For correct simulation of the non-isothermal heat and mass transfer, it is necessary to take into account local characteristics of thermal and velocity fields inside a layer of the salt solution, as well as to determine the average characteristic scales of circulation into the liquid. To simplify the analysis it is possible to effectively consider four types of characteristic convective scales, the role of which depends on the thickness and diameter of the solution layer, as well as on the wall temperature. The strong influence of free convection in a thin layer of the solution is extremely important for accurate modeling of a wide range of modern technologies. Intensification of heat transfer and evaporation due to the use of a structured wall can be applied in heat exchangers, to improve efficiency in desalination of water, in energy technologies (e.g., in heat absorption pumps), as well as in chemical technologies.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"48 - 66"},"PeriodicalIF":2.7000,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1551448","citationCount":"9","resultStr":"{\"title\":\"Free Solution Convection at Non-Isothermal Evaporation of Aqueous Salt Solution on a Micro-Structured Wall\",\"authors\":\"S. Misyura\",\"doi\":\"10.1080/15567265.2018.1551448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Evaporation and heat transfer of layers of aqueous salt solutions have been studied. The behavior of salt solutions is compared for a smooth and micro-structured wall with a rectangular profile. The evaporation rate of the salt solution on the structured wall is 20–30% higher than on the smooth one at high salt concentration. Previously, it was thought that the heat transfer for solutions can be calculated for thin layers and films without taking into account the natural convection in liquid. In this paper, the liquid free convection is shown to play a key role. A simple model linking the solutal and the thermal Marangoni numbers and the Peclet number with free convection of the liquid on a hot structured wall is considered. For correct simulation of the non-isothermal heat and mass transfer, it is necessary to take into account local characteristics of thermal and velocity fields inside a layer of the salt solution, as well as to determine the average characteristic scales of circulation into the liquid. To simplify the analysis it is possible to effectively consider four types of characteristic convective scales, the role of which depends on the thickness and diameter of the solution layer, as well as on the wall temperature. The strong influence of free convection in a thin layer of the solution is extremely important for accurate modeling of a wide range of modern technologies. Intensification of heat transfer and evaporation due to the use of a structured wall can be applied in heat exchangers, to improve efficiency in desalination of water, in energy technologies (e.g., in heat absorption pumps), as well as in chemical technologies.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"23 1\",\"pages\":\"48 - 66\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2018-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2018.1551448\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2018.1551448\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1551448","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 9

摘要

研究了盐水溶液层的蒸发和传热。比较了具有矩形轮廓的光滑微结构壁的盐溶液的行为。在高盐浓度下,结构化壁上的盐溶液的蒸发率比光滑壁上的高出20–30%。以前,人们认为可以在不考虑液体中自然对流的情况下计算薄层和薄膜的溶液传热。在本文中,液体自由对流起着关键作用。考虑了一个简单的模型,该模型将溶质和热Marangoni数以及Peclet数与热结构壁上液体的自由对流联系起来。为了正确模拟非等温传热和传质,有必要考虑盐溶液层内热场和速度场的局部特征,并确定进入液体的循环的平均特征尺度。为了简化分析,可以有效地考虑四种类型的特征对流尺度,其作用取决于溶液层的厚度和直径以及壁温。溶液薄层中自由对流的强烈影响对于各种现代技术的精确建模极其重要。由于使用结构化壁而导致的热传递和蒸发的强化可以应用于热交换器,以提高水脱盐的效率,应用于能源技术(例如,应用于吸热泵)以及化学技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Free Solution Convection at Non-Isothermal Evaporation of Aqueous Salt Solution on a Micro-Structured Wall
ABSTRACT Evaporation and heat transfer of layers of aqueous salt solutions have been studied. The behavior of salt solutions is compared for a smooth and micro-structured wall with a rectangular profile. The evaporation rate of the salt solution on the structured wall is 20–30% higher than on the smooth one at high salt concentration. Previously, it was thought that the heat transfer for solutions can be calculated for thin layers and films without taking into account the natural convection in liquid. In this paper, the liquid free convection is shown to play a key role. A simple model linking the solutal and the thermal Marangoni numbers and the Peclet number with free convection of the liquid on a hot structured wall is considered. For correct simulation of the non-isothermal heat and mass transfer, it is necessary to take into account local characteristics of thermal and velocity fields inside a layer of the salt solution, as well as to determine the average characteristic scales of circulation into the liquid. To simplify the analysis it is possible to effectively consider four types of characteristic convective scales, the role of which depends on the thickness and diameter of the solution layer, as well as on the wall temperature. The strong influence of free convection in a thin layer of the solution is extremely important for accurate modeling of a wide range of modern technologies. Intensification of heat transfer and evaporation due to the use of a structured wall can be applied in heat exchangers, to improve efficiency in desalination of water, in energy technologies (e.g., in heat absorption pumps), as well as in chemical technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1