{"title":"比较成本效益分析的马尔可夫和非马尔可夫替代方案:来自宫颈癌病例的见解","authors":"Cristina del Campo , Jiaru Bai , L. Robin Keller","doi":"10.1016/j.orhc.2019.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Markov model allows medical prognosis to be modeled with health state transitions over time and are particularly useful for decisions regarding diseases where uncertain events and outcomes may occur. To provide sufficient detail for operations researchers to carry out a Markov analysis, we present a detailed example of a Markov model with five health states with monthly transitions with stationary transition probabilities between states to model the cost and effectiveness of two treatments for advanced cervical cancer. A different approach uses survival curves to directly model the fraction of patients in each state at each time period without the Markov property. We use this alternative method to analyze the cervical cancer case and compare the Markov and non-Markov approaches. These models provide useful insights about both the effectiveness of treatments and the associated costs for healthcare decision makers.</p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"21 ","pages":"Pages 32-43"},"PeriodicalIF":1.5000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.orhc.2019.04.001","citationCount":"8","resultStr":"{\"title\":\"Comparing Markov and non-Markov alternatives for cost-effectiveness analysis: Insights from a cervical cancer case\",\"authors\":\"Cristina del Campo , Jiaru Bai , L. Robin Keller\",\"doi\":\"10.1016/j.orhc.2019.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Markov model allows medical prognosis to be modeled with health state transitions over time and are particularly useful for decisions regarding diseases where uncertain events and outcomes may occur. To provide sufficient detail for operations researchers to carry out a Markov analysis, we present a detailed example of a Markov model with five health states with monthly transitions with stationary transition probabilities between states to model the cost and effectiveness of two treatments for advanced cervical cancer. A different approach uses survival curves to directly model the fraction of patients in each state at each time period without the Markov property. We use this alternative method to analyze the cervical cancer case and compare the Markov and non-Markov approaches. These models provide useful insights about both the effectiveness of treatments and the associated costs for healthcare decision makers.</p></div>\",\"PeriodicalId\":46320,\"journal\":{\"name\":\"Operations Research for Health Care\",\"volume\":\"21 \",\"pages\":\"Pages 32-43\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.orhc.2019.04.001\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research for Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211692318301097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692318301097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Comparing Markov and non-Markov alternatives for cost-effectiveness analysis: Insights from a cervical cancer case
Markov model allows medical prognosis to be modeled with health state transitions over time and are particularly useful for decisions regarding diseases where uncertain events and outcomes may occur. To provide sufficient detail for operations researchers to carry out a Markov analysis, we present a detailed example of a Markov model with five health states with monthly transitions with stationary transition probabilities between states to model the cost and effectiveness of two treatments for advanced cervical cancer. A different approach uses survival curves to directly model the fraction of patients in each state at each time period without the Markov property. We use this alternative method to analyze the cervical cancer case and compare the Markov and non-Markov approaches. These models provide useful insights about both the effectiveness of treatments and the associated costs for healthcare decision makers.