{"title":"关于依赖小样本假设的描述性价值","authors":"Ido Erev, Doron Cohen, Ofir Yakobi","doi":"10.1017/s1930297500009311","DOIUrl":null,"url":null,"abstract":"Experience is the best teacher. Yet, in the context of repeated decisions, experience was found to trigger deviations from maximization in the direction of underweighting of rare events. Evaluations of alternative explanations for this bias led to contradicting conclusions. Studies that focused on the aggregate choice rates, including a series of choice prediction competitions, favored the assumption that this bias reflects reliance on small samples. In contrast, studies that focused on individual decisions suggest that the bias reflects a strong myopic tendency by a significant minority of participants. The current analysis clarifies the apparent inconsistency by reanalyzing a data set that previously led to contradicting conclusions. Our analysis suggests that the apparent inconsistency reflects the differing focus of the cognitive models. Specifically, sequential adjustment models (that assume sensitivity to the payoffs’ weighted averages) tend to find support for the hypothesis that the deviations from maximization are a product of strong positive recency (a form of myopia). Conversely, models assuming random sampling of past experiences tend to find support to the hypothesis that the deviations reflect reliance on small samples. We propose that the debate should be resolved by using the assumptions that provide better predictions. Applying this solution to the data set we analyzed shows that the random sampling assumption outperforms the weighted average assumption both when predicting the aggregate choice rates and when predicting the individual decisions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the descriptive value of the reliance on small-samples assumption\",\"authors\":\"Ido Erev, Doron Cohen, Ofir Yakobi\",\"doi\":\"10.1017/s1930297500009311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experience is the best teacher. Yet, in the context of repeated decisions, experience was found to trigger deviations from maximization in the direction of underweighting of rare events. Evaluations of alternative explanations for this bias led to contradicting conclusions. Studies that focused on the aggregate choice rates, including a series of choice prediction competitions, favored the assumption that this bias reflects reliance on small samples. In contrast, studies that focused on individual decisions suggest that the bias reflects a strong myopic tendency by a significant minority of participants. The current analysis clarifies the apparent inconsistency by reanalyzing a data set that previously led to contradicting conclusions. Our analysis suggests that the apparent inconsistency reflects the differing focus of the cognitive models. Specifically, sequential adjustment models (that assume sensitivity to the payoffs’ weighted averages) tend to find support for the hypothesis that the deviations from maximization are a product of strong positive recency (a form of myopia). Conversely, models assuming random sampling of past experiences tend to find support to the hypothesis that the deviations reflect reliance on small samples. We propose that the debate should be resolved by using the assumptions that provide better predictions. Applying this solution to the data set we analyzed shows that the random sampling assumption outperforms the weighted average assumption both when predicting the aggregate choice rates and when predicting the individual decisions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/s1930297500009311\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/s1930297500009311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the descriptive value of the reliance on small-samples assumption
Experience is the best teacher. Yet, in the context of repeated decisions, experience was found to trigger deviations from maximization in the direction of underweighting of rare events. Evaluations of alternative explanations for this bias led to contradicting conclusions. Studies that focused on the aggregate choice rates, including a series of choice prediction competitions, favored the assumption that this bias reflects reliance on small samples. In contrast, studies that focused on individual decisions suggest that the bias reflects a strong myopic tendency by a significant minority of participants. The current analysis clarifies the apparent inconsistency by reanalyzing a data set that previously led to contradicting conclusions. Our analysis suggests that the apparent inconsistency reflects the differing focus of the cognitive models. Specifically, sequential adjustment models (that assume sensitivity to the payoffs’ weighted averages) tend to find support for the hypothesis that the deviations from maximization are a product of strong positive recency (a form of myopia). Conversely, models assuming random sampling of past experiences tend to find support to the hypothesis that the deviations reflect reliance on small samples. We propose that the debate should be resolved by using the assumptions that provide better predictions. Applying this solution to the data set we analyzed shows that the random sampling assumption outperforms the weighted average assumption both when predicting the aggregate choice rates and when predicting the individual decisions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.