羟乙基纤维素改善水基ZnO纳米颗粒锆合金冷轧润滑剂的摩擦学性能

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Lubrication Science Pub Date : 2023-05-04 DOI:10.1002/ls.1653
Qi Liu, Jing Li, Junfeng Zhang, Hengdi Yuan, Ange Nsilani Kouediatouka, Guangneng Dong
{"title":"羟乙基纤维素改善水基ZnO纳米颗粒锆合金冷轧润滑剂的摩擦学性能","authors":"Qi Liu,&nbsp;Jing Li,&nbsp;Junfeng Zhang,&nbsp;Hengdi Yuan,&nbsp;Ange Nsilani Kouediatouka,&nbsp;Guangneng Dong","doi":"10.1002/ls.1653","DOIUrl":null,"url":null,"abstract":"<p>Currently, substantial adhesion wear frequently occurs in Zr alloy cold rolling, which not only affects the quality of product's surface, but shortens the mould's service life. In this paper, water-based lubricant was prepared by using ZnO as additive and hydroxyethyl cellulose (HEC) as dispersant. The tribological test results showed the friction coefficient decreased by a maximum of 84.6%, and the friction surface was smooth and flat, with essentially no wear. By analysing the friction area, it was found after ZnO entered the friction interface, HEC carried a hydrated molecular layer to form a stable lubrication film at the interface. This film worked with nanoparticles to reduce friction and wear, and is expected to prolong the service life of rolling dies.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of tribological properties of water-based ZnO nanoparticles lubricant for zirconium alloy cold rolling by hydroxyethyl cellulose\",\"authors\":\"Qi Liu,&nbsp;Jing Li,&nbsp;Junfeng Zhang,&nbsp;Hengdi Yuan,&nbsp;Ange Nsilani Kouediatouka,&nbsp;Guangneng Dong\",\"doi\":\"10.1002/ls.1653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, substantial adhesion wear frequently occurs in Zr alloy cold rolling, which not only affects the quality of product's surface, but shortens the mould's service life. In this paper, water-based lubricant was prepared by using ZnO as additive and hydroxyethyl cellulose (HEC) as dispersant. The tribological test results showed the friction coefficient decreased by a maximum of 84.6%, and the friction surface was smooth and flat, with essentially no wear. By analysing the friction area, it was found after ZnO entered the friction interface, HEC carried a hydrated molecular layer to form a stable lubrication film at the interface. This film worked with nanoparticles to reduce friction and wear, and is expected to prolong the service life of rolling dies.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1653\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1653","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前Zr合金冷轧中经常出现大量的粘着磨损,不仅影响产品表面质量,而且缩短了模具的使用寿命。以氧化锌为添加剂,羟乙基纤维素(HEC)为分散剂,制备了水基润滑剂。摩擦学试验结果表明,摩擦系数最大降低84.6%,摩擦表面光滑平整,基本无磨损。通过对摩擦面积的分析,发现ZnO进入摩擦界面后,HEC携带水合分子层,在界面处形成稳定的润滑膜。该薄膜与纳米颗粒一起工作,减少摩擦和磨损,并有望延长滚动模具的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of tribological properties of water-based ZnO nanoparticles lubricant for zirconium alloy cold rolling by hydroxyethyl cellulose

Currently, substantial adhesion wear frequently occurs in Zr alloy cold rolling, which not only affects the quality of product's surface, but shortens the mould's service life. In this paper, water-based lubricant was prepared by using ZnO as additive and hydroxyethyl cellulose (HEC) as dispersant. The tribological test results showed the friction coefficient decreased by a maximum of 84.6%, and the friction surface was smooth and flat, with essentially no wear. By analysing the friction area, it was found after ZnO entered the friction interface, HEC carried a hydrated molecular layer to form a stable lubrication film at the interface. This film worked with nanoparticles to reduce friction and wear, and is expected to prolong the service life of rolling dies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
期刊最新文献
Properties of Bi2S3 Coatings Deposited on the Bionic Leaf Vein Textured Surfaces With Different Surface Densities Investigation on Air Drag Reduction and Stabilisation of Bionic Multiscale Wetting Gradient Surfaces Improving the Performance of Machining Parameters in the Turning Process of Inconel 686 by Using Cryo‐MQL Method Issue Information Improving the Performance of the Machining Process by Using Ultra‐Advanced Tools in a Clean Turning of Inconel 686 Using the Minimum Quantity Lubrication Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1