Julien Renou , Rodnay Sormani , Eric Gelhaye , Claude Didierjean , Mélanie Morel-Rouhier
{"title":"真菌中延伸因子eEF1Bγ多样化的基因组和功能见解","authors":"Julien Renou , Rodnay Sormani , Eric Gelhaye , Claude Didierjean , Mélanie Morel-Rouhier","doi":"10.1016/j.fbr.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>eEF1Bγs are proteins found in all eukaryotes and have a role in protein translation<span><span><span>, being part of the nucleotide exchange factor eEF1B of the </span>elongation factor<span> complex 1. They are unique because of their organization as a fusion between a glutathione transferase (GST) domain and an elongation factor EF1G (PF00647) domain. The main described function of the GST domain in eEF1Bγ is to ensure the proper scaffolding of the different subunits in the eEF1B complex, by interacting with eEF1Bα subunit. Several evidences also suggest that this domain has a role in cellular redox control because it displays </span></span>enzymatic activity using glutathione as co-substrate. This opens the question of a dual role of eEF1Bγ in cells both in protein translation and stress response, either in a concomitant or competitive way. By analyzing the diversity of eEF1Bγ sequences in fungi, we show that this class of proteins is subjected to diversification within these microorganisms. The challenge is now to understand the impact of such diversification in eEF1Bγ functions both related to protein translation and stress response, and whether this could have driven the ability of fungi to adapt to constraints.</span></p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"42 ","pages":"Pages 74-84"},"PeriodicalIF":5.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genomic and functional insights into the diversification of the elongation factor eEF1Bγ in fungi\",\"authors\":\"Julien Renou , Rodnay Sormani , Eric Gelhaye , Claude Didierjean , Mélanie Morel-Rouhier\",\"doi\":\"10.1016/j.fbr.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>eEF1Bγs are proteins found in all eukaryotes and have a role in protein translation<span><span><span>, being part of the nucleotide exchange factor eEF1B of the </span>elongation factor<span> complex 1. They are unique because of their organization as a fusion between a glutathione transferase (GST) domain and an elongation factor EF1G (PF00647) domain. The main described function of the GST domain in eEF1Bγ is to ensure the proper scaffolding of the different subunits in the eEF1B complex, by interacting with eEF1Bα subunit. Several evidences also suggest that this domain has a role in cellular redox control because it displays </span></span>enzymatic activity using glutathione as co-substrate. This opens the question of a dual role of eEF1Bγ in cells both in protein translation and stress response, either in a concomitant or competitive way. By analyzing the diversity of eEF1Bγ sequences in fungi, we show that this class of proteins is subjected to diversification within these microorganisms. The challenge is now to understand the impact of such diversification in eEF1Bγ functions both related to protein translation and stress response, and whether this could have driven the ability of fungi to adapt to constraints.</span></p></div>\",\"PeriodicalId\":12563,\"journal\":{\"name\":\"Fungal Biology Reviews\",\"volume\":\"42 \",\"pages\":\"Pages 74-84\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749461322000276\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461322000276","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Genomic and functional insights into the diversification of the elongation factor eEF1Bγ in fungi
eEF1Bγs are proteins found in all eukaryotes and have a role in protein translation, being part of the nucleotide exchange factor eEF1B of the elongation factor complex 1. They are unique because of their organization as a fusion between a glutathione transferase (GST) domain and an elongation factor EF1G (PF00647) domain. The main described function of the GST domain in eEF1Bγ is to ensure the proper scaffolding of the different subunits in the eEF1B complex, by interacting with eEF1Bα subunit. Several evidences also suggest that this domain has a role in cellular redox control because it displays enzymatic activity using glutathione as co-substrate. This opens the question of a dual role of eEF1Bγ in cells both in protein translation and stress response, either in a concomitant or competitive way. By analyzing the diversity of eEF1Bγ sequences in fungi, we show that this class of proteins is subjected to diversification within these microorganisms. The challenge is now to understand the impact of such diversification in eEF1Bγ functions both related to protein translation and stress response, and whether this could have driven the ability of fungi to adapt to constraints.
期刊介绍:
Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.