A total of 518 endophytic fungal taxa (excluding 105 taxa identified beyond the level of genus and Mycelia sterilia) from 370 genera belonging to 188 families (including forty six isolates of uncertain taxonomic positions), were isolated from seventeen different Cycads. The results revealed that, although members of Ascomycota were dominant, the presence of Basidiomycota, Mucoromycota, Chytridiomycota, Olpidiomycota and Zoopagomycota couldn't be ruled out.
The endophytic fungi associated with Cycadales have been reported to exist in different primary lifestyles viz. plant_pathogens (86 genera), wood_saprotroph (78 genera), litter_saprotroph (44 genera), soil_saprotroph (41 genera), animal_parasite (24 genera), unspecified_saprotroph (20 genera), mycoparasite (13 genera), nectar/tap_saprotroph (11 genera), na and lichenized (08 genera each), ectomycorrhizal (07 genera), dung_saprotroph (06 genera), foliar_endophyte and arbuscular_mycorrhizal (05 genera each), epiphyte (04 genera), algal_parasite (03 genera), pollen_saprotroph and root_endophyte (02 genera each), lichen_parasite, unspecified_pathotroph, sooty_mold (01 genera each) (excluding 105 taxa which were identified either up to class, order and family level or are treated as incertae sedis, and Mycelia sterilia) and possibly produce several toxic compounds.
In a nut shell, the presence of fungal endophytes of different life histories, in a Cycad's endobiome, their long evolutionary history of association with the leaf, and capability of producing several mycotoxins could possibly mediate herbivory, and these specific fungal endophytes could be identified as candidates for future functional study.
The absorption of cadmium (Cd) initiates a sequence of detrimental effects or harm to organisms. The presence of Cd in Saccharomyces cerevisiae affects key metal import channels, leading to a disruption in the balance of metal ions inside the organism. S. cerevisiae has established metal homeostasis mechanisms in response to Cd stress, which regulates metal transporters located in the plasma and vacuole membranes. This review analyzes the maintenance of metal homeostasis in S. cerevisiae and its mechanism from three different perspectives: (1) the effects of Cd on metals, (2) the reaction of Yap1 with Cd, and (3) glutathione (GSH) regulates the homeostasis of Yap1 in relation to metal transporters. This helps us to understand how metal homeostasis is maintained in S. cerevisiae when exposed to Cd. The generally held belief is that the reaction to Cd poisoning is strongly linked to oxidative stress. This review will offer insights into new reaction pathways to Cd that are different from oxidative stress, specifically focusing on the Cd(GS)2 complex.
Fungi are widely distributed on our planet, including in extremely harsh habitats, such as the polar regions. The extreme conditions of those habitats limit the number of organisms capable of living there, but some fungi are adapted to the polar conditions and play essential roles in nutrient cycling. However, knowledge about their diversity, distribution, and functioning is fragmented, and approaches used to study them are diverse, often yielding difficult-to-compare results. We present maps with locations of mycological studies in the Arctic and Antarctica, as well as a list of mycelial fungi found on various terrestrial substrates through cultivation on nutrient media and/or molecular methods. These fungi were identified to the species level based on morphological-cultural features or gene-sequence analysis. Analysis of the methods applied to study fungi in different substrates shows that a combination of multiple methods is optimal to study species composition. The taxonomic affiliation of the identified species to different fungal divisions is largely determined by habitat conditions and research methods. The largest number of species belongs to the divisions Ascomycota and Basidiomycota. The predominant ecological groups were saprotrophic and symbiotic fungi. The majority of 1324 discovered fungal species are known as cosmopolitan species. Approximately one-fifth of the fungi were identical between the Arctic and Antarctica, only a few species are known to be endemic to Antarctica or Arctic, and there are 1–6 identified bipolar species. Claims of endemism of polar-region fungi are relatively weakly supported.
Arbuscular mycorrhizal fungi (AMF) play a pivotal role in soil organic carbon (C) dynamics. AMF can channel C obtained from plants into the soil as labile and recalcitrant materials with contrasting impacts on soil organic carbon (SOC) reserves. Labile C supply, while increasing microbial biomass, can also elevate microbial respiration, leading to enhanced organic matter turnover. Conversely, the production of recalcitrant materials, including biomass and glomalin-related soil protein (GRSP) can promote SOC sequestration directly by acting as long-term C storage, strengthening soil aggregates, and promoting the formation of mineral-bound organic carbon. The contrasting impacts of AMF products on SOC often generate controversies regarding the role of AMF communities in C capture, especially under rising atmospheric CO2 concentrations. Emerging evidence suggests that distinct AMF phylogeny exhibit varying soil organic matter mobilization and symbiotic nutrient exchange abilities owing to their divergent life histories. However, we argue that resource use efficiency among AMF species significantly influences the phenotypic outcome of AM symbiosis, as well as their impacts on soil carbon dynamics. AMF functional traits favoring recalcitrant C substances including glomalin-related proteins and mineral-associated organic matter over labile C may positively impact SOC sequestration in the long-term. Whereas an AMF functional guild promoting plant growth through labile C (i.e., sugars) exudation may increase SOC turnover leading to lead to SOC loss. Although strong mutualist AMF may negatively impact SOC stocks, they can compensate for this trade-off by depositing fresh, newly fixed C and promoting plant photosynthesis. The ways in which this trade-off is offset can vary among different AMF species and community compositions, warranting further investigation.