侵入性创伤再体验域(ITRED) - ENIGMA PTSD联盟的功能连接特征分类

Benjamin Suarez-Jimenez , Amit Lazarov , Xi Zhu , Sigal Zilcha-Mano , Yoojean Kim , Claire E. Marino , Pavel Rjabtsenkov , Shreya Y. Bavdekar , Daniel S. Pine , Yair Bar-Haim , Christine L. Larson , Ashley A. Huggins , Terri deRoon-Cassini , Carissa Tomas , Jacklynn Fitzgerald , Mitzy Kennis , Tim Varkevisser , Elbert Geuze , Yann Quidé , Wissam El Hage , Rajendra A. Morey
{"title":"侵入性创伤再体验域(ITRED) - ENIGMA PTSD联盟的功能连接特征分类","authors":"Benjamin Suarez-Jimenez ,&nbsp;Amit Lazarov ,&nbsp;Xi Zhu ,&nbsp;Sigal Zilcha-Mano ,&nbsp;Yoojean Kim ,&nbsp;Claire E. Marino ,&nbsp;Pavel Rjabtsenkov ,&nbsp;Shreya Y. Bavdekar ,&nbsp;Daniel S. Pine ,&nbsp;Yair Bar-Haim ,&nbsp;Christine L. Larson ,&nbsp;Ashley A. Huggins ,&nbsp;Terri deRoon-Cassini ,&nbsp;Carissa Tomas ,&nbsp;Jacklynn Fitzgerald ,&nbsp;Mitzy Kennis ,&nbsp;Tim Varkevisser ,&nbsp;Elbert Geuze ,&nbsp;Yann Quidé ,&nbsp;Wissam El Hage ,&nbsp;Rajendra A. Morey","doi":"10.1016/j.bpsgos.2023.05.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective.</p></div><div><h3>Methods</h3><p>Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (<em>n</em> <em>=</em> 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)–only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated.</p></div><div><h3>Results</h3><p>rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network–related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group.</p></div><div><h3>Conclusions</h3><p>Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology.</p></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266717432300054X/pdfft?md5=7768ff356bdada4cbe512998b7b05bac&pid=1-s2.0-S266717432300054X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intrusive Traumatic Re-Experiencing Domain: Functional Connectivity Feature Classification by the ENIGMA PTSD Consortium\",\"authors\":\"Benjamin Suarez-Jimenez ,&nbsp;Amit Lazarov ,&nbsp;Xi Zhu ,&nbsp;Sigal Zilcha-Mano ,&nbsp;Yoojean Kim ,&nbsp;Claire E. Marino ,&nbsp;Pavel Rjabtsenkov ,&nbsp;Shreya Y. Bavdekar ,&nbsp;Daniel S. Pine ,&nbsp;Yair Bar-Haim ,&nbsp;Christine L. Larson ,&nbsp;Ashley A. Huggins ,&nbsp;Terri deRoon-Cassini ,&nbsp;Carissa Tomas ,&nbsp;Jacklynn Fitzgerald ,&nbsp;Mitzy Kennis ,&nbsp;Tim Varkevisser ,&nbsp;Elbert Geuze ,&nbsp;Yann Quidé ,&nbsp;Wissam El Hage ,&nbsp;Rajendra A. Morey\",\"doi\":\"10.1016/j.bpsgos.2023.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective.</p></div><div><h3>Methods</h3><p>Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (<em>n</em> <em>=</em> 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)–only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated.</p></div><div><h3>Results</h3><p>rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network–related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group.</p></div><div><h3>Conclusions</h3><p>Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology.</p></div>\",\"PeriodicalId\":72373,\"journal\":{\"name\":\"Biological psychiatry global open science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266717432300054X/pdfft?md5=7768ff356bdada4cbe512998b7b05bac&pid=1-s2.0-S266717432300054X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological psychiatry global open science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266717432300054X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266717432300054X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景侵入性创伤再体验域(ITRED)是最近作为创伤后精神病理学的一个新视角而提出的,它建议将创伤后应激障碍(PTSD)的研究重点放在侵入性和不自主地再体验创伤的独特症状上,即侵入性回忆、噩梦和闪回。本研究旨在从神经网络连通性的角度探讨ITRED。方法数据收集自参加ENIGMA(通过元分析增强神经成像遗传学)创伤后应激障碍联合会的9个研究机构(n = 584),包括逐项的创伤后应激障碍症状评分和静息态功能连通性(rsFC)数据。我们采用机器学习方法评估了 rsFC 在划分创伤后应激障碍组、纯创伤后应激障碍组(无创伤后应激障碍诊断)和纯创伤暴露组(无创伤后应激障碍或纯创伤后应激障碍)时的实用性,并研究了与创伤后应激障碍有关的知名网络。利用交叉验证在训练集上建立了随机森林分类模型,并利用曲线下面积评估了分类模型的平均交叉验证性能。使用完全独立的部分数据(测试数据集)对模型进行了测试,并评估了测试的曲线下面积。结果rsFC特征将纯 TE参与者与纯创伤后应激障碍和纯 ITRED参与者区分开来的准确率约为60%。相反,rsFC特征并不能将创伤后应激障碍患者与纯 ITRED患者区分开来(准确率为 45%)。区分创伤后应激障碍患者和纯创伤后应激障碍患者的共同特征主要涉及默认模式网络相关通路。一些独特的特征,如额顶叶网络内的连通性,将纯 TE 参与者与其中一组(创伤后应激障碍或纯 ITRED)区分开来,但与另一组的区分程度较低。结论神经网络连通性支持 ITRED 作为一种基于神经生物学的新方法来对创伤后精神病理学进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrusive Traumatic Re-Experiencing Domain: Functional Connectivity Feature Classification by the ENIGMA PTSD Consortium

Background

Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective.

Methods

Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (n = 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)–only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated.

Results

rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network–related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group.

Conclusions

Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
期刊最新文献
The Transition From Homogeneous to Heterogeneous Machine Learning in Neuropsychiatric Research Oxytocin Reduces Noradrenergic-Induced Opioid-Like Withdrawal Symptoms in Individuals on Opioid Agonist Therapy Differing Pattern of Mismatch Negativity Responses in Clinical and Nonclinical Voice Hearers Challenge Predictive Coding Accounts of Psychosis The Balance N1 Is Larger in Children With Anxiety and Associated With the Error-Related Negativity Investigating the Shared Genetic Architecture Between Psychiatric Disorders and Executive Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1