Francesco Broccoli, Rosanna Paparo, M. R. Iesce, M. Di Serio, V. Russo
{"title":"TiO2促进苯酚的非均相光降解反应动力学研究","authors":"Francesco Broccoli, Rosanna Paparo, M. R. Iesce, M. Di Serio, V. Russo","doi":"10.3390/chemengineering7020027","DOIUrl":null,"url":null,"abstract":"Phenol is widely used in industry. Due to its high stability and toxicity, it represents a threat to the environment and human health. In this study, a kinetic investigation of phenol heterogeneous photodegradation was conducted using commercial Aeroxide P-25, performing experiments in a wide range of conditions. In detail, a negligible adsorption effect was detected. An activation energy of Ea = 14.3 ± 0.5 kJ mol−1 was measured, and the catalyst loading effect indicated an optimal condition due to the shield of the catalyst particles to the UV irradiation. The catalyst was most active at pH = 7 and it was stable for 25 h of reaction time; thus, it will be worth to investigate its application in flow.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heterogeneous Photodegradation Reaction of Phenol Promoted by TiO2: A Kinetic Study\",\"authors\":\"Francesco Broccoli, Rosanna Paparo, M. R. Iesce, M. Di Serio, V. Russo\",\"doi\":\"10.3390/chemengineering7020027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenol is widely used in industry. Due to its high stability and toxicity, it represents a threat to the environment and human health. In this study, a kinetic investigation of phenol heterogeneous photodegradation was conducted using commercial Aeroxide P-25, performing experiments in a wide range of conditions. In detail, a negligible adsorption effect was detected. An activation energy of Ea = 14.3 ± 0.5 kJ mol−1 was measured, and the catalyst loading effect indicated an optimal condition due to the shield of the catalyst particles to the UV irradiation. The catalyst was most active at pH = 7 and it was stable for 25 h of reaction time; thus, it will be worth to investigate its application in flow.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7020027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Heterogeneous Photodegradation Reaction of Phenol Promoted by TiO2: A Kinetic Study
Phenol is widely used in industry. Due to its high stability and toxicity, it represents a threat to the environment and human health. In this study, a kinetic investigation of phenol heterogeneous photodegradation was conducted using commercial Aeroxide P-25, performing experiments in a wide range of conditions. In detail, a negligible adsorption effect was detected. An activation energy of Ea = 14.3 ± 0.5 kJ mol−1 was measured, and the catalyst loading effect indicated an optimal condition due to the shield of the catalyst particles to the UV irradiation. The catalyst was most active at pH = 7 and it was stable for 25 h of reaction time; thus, it will be worth to investigate its application in flow.