鸟颈仿生刚柔结构的力学特性

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary Fundamental Research Pub Date : 2024-11-01 DOI:10.1016/j.fmre.2022.06.023
Xiuting Sun, Jian Xu, Zhifeng Qi
{"title":"鸟颈仿生刚柔结构的力学特性","authors":"Xiuting Sun,&nbsp;Jian Xu,&nbsp;Zhifeng Qi","doi":"10.1016/j.fmre.2022.06.023","DOIUrl":null,"url":null,"abstract":"<div><div>By the biological construction of a bird neck, a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained. The proposed structure can flexibly deform in six directions, which inspires the study of its mechanical properties for flexible deformations. First, the structural configuration and composition are determined based on the study of the anatomical characteristics of the woodpeckers. Since the skeletons and muscles have very different values for the elasticity modulus and the deformation is mostly dependent on the muscle tension, the bionic structure consists of rigid units and bio-syncretic components. For combined deformations, the mechanical model is established by the connectivity matrix to describe the connection of each level. Second, based on the principle of minimum potential energy, an integral form-finding method is proposed for flexible combination deformations. All of the integral forms obtained with the theoretical analysis are compared with the results with Finite Element Analysis. The structural parameters of the bionic structure were then tightly fixed to the actual shape of the bird's neck and the corresponding overall form took on an \"S\" shape, which perfectly matched the construction of the bird's neck. In addition, for the pre-deformation form, by analyzing the potential energy of the bionic structure, due to the adjustable dynamic stiffness property, an explanation is provided for the significant dynamic stability of the bird neck in bending. This study not only proposes a bionic rigid-flexible structure with high spatial accessibility but also explains biological properties of a bird neck based on the study of its mechanics characteristics. Based on the modeling and the mechanical properties of the bionic structure in flexible spatial combination deformations, the multi-steady state, and the variable dynamic stiffness, the bird-neck bionic rigid-flexible structure has significant applications such as aeronautical deployable systems, manipulator positioning, and dynamic stability fields.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1613-1624"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism properties of a bird-neck bionic rigid-flexible structure\",\"authors\":\"Xiuting Sun,&nbsp;Jian Xu,&nbsp;Zhifeng Qi\",\"doi\":\"10.1016/j.fmre.2022.06.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By the biological construction of a bird neck, a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained. The proposed structure can flexibly deform in six directions, which inspires the study of its mechanical properties for flexible deformations. First, the structural configuration and composition are determined based on the study of the anatomical characteristics of the woodpeckers. Since the skeletons and muscles have very different values for the elasticity modulus and the deformation is mostly dependent on the muscle tension, the bionic structure consists of rigid units and bio-syncretic components. For combined deformations, the mechanical model is established by the connectivity matrix to describe the connection of each level. Second, based on the principle of minimum potential energy, an integral form-finding method is proposed for flexible combination deformations. All of the integral forms obtained with the theoretical analysis are compared with the results with Finite Element Analysis. The structural parameters of the bionic structure were then tightly fixed to the actual shape of the bird's neck and the corresponding overall form took on an \\\"S\\\" shape, which perfectly matched the construction of the bird's neck. In addition, for the pre-deformation form, by analyzing the potential energy of the bionic structure, due to the adjustable dynamic stiffness property, an explanation is provided for the significant dynamic stability of the bird neck in bending. This study not only proposes a bionic rigid-flexible structure with high spatial accessibility but also explains biological properties of a bird neck based on the study of its mechanics characteristics. Based on the modeling and the mechanical properties of the bionic structure in flexible spatial combination deformations, the multi-steady state, and the variable dynamic stiffness, the bird-neck bionic rigid-flexible structure has significant applications such as aeronautical deployable systems, manipulator positioning, and dynamic stability fields.</div></div>\",\"PeriodicalId\":34602,\"journal\":{\"name\":\"Fundamental Research\",\"volume\":\"4 6\",\"pages\":\"Pages 1613-1624\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667325822003053\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822003053","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

通过对鸟颈的生物构造,提出了一种仿生鸟颈多级刚柔结构,并对其生物特征进行了解释。该结构可以在六个方向上进行柔性变形,从而激发了对其柔性变形力学性能的研究。首先,在研究啄木鸟解剖特征的基础上,确定了啄木鸟的结构形态和组成。由于骨骼和肌肉的弹性模量有很大的不同,而变形主要取决于肌肉的张力,因此仿生结构由刚性单元和生物合成部件组成。对于组合变形,通过连通性矩阵建立力学模型来描述各层的连通性。其次,基于最小势能原理,提出了柔性组合变形的积分寻形方法。将理论分析得到的积分形式与有限元分析结果进行了比较。然后将仿生结构的结构参数与鸟脖子的实际形状紧密固定,相应的整体形状呈“S”形,与鸟脖子的构造完美匹配。此外,对于预变形形式,通过分析仿生结构的势能,由于动态刚度可调的特性,解释了鸟颈弯曲时显著的动态稳定性。本研究不仅提出了一种具有高空间可达性的仿生刚柔结构,而且在研究鸟颈力学特性的基础上解释了鸟颈的生物学特性。基于仿生结构在柔性空间组合变形、多稳态和变动刚度下的建模和力学特性,鸟颈仿生刚柔结构在航空展开系统、机械臂定位和动稳定等领域具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanism properties of a bird-neck bionic rigid-flexible structure
By the biological construction of a bird neck, a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained. The proposed structure can flexibly deform in six directions, which inspires the study of its mechanical properties for flexible deformations. First, the structural configuration and composition are determined based on the study of the anatomical characteristics of the woodpeckers. Since the skeletons and muscles have very different values for the elasticity modulus and the deformation is mostly dependent on the muscle tension, the bionic structure consists of rigid units and bio-syncretic components. For combined deformations, the mechanical model is established by the connectivity matrix to describe the connection of each level. Second, based on the principle of minimum potential energy, an integral form-finding method is proposed for flexible combination deformations. All of the integral forms obtained with the theoretical analysis are compared with the results with Finite Element Analysis. The structural parameters of the bionic structure were then tightly fixed to the actual shape of the bird's neck and the corresponding overall form took on an "S" shape, which perfectly matched the construction of the bird's neck. In addition, for the pre-deformation form, by analyzing the potential energy of the bionic structure, due to the adjustable dynamic stiffness property, an explanation is provided for the significant dynamic stability of the bird neck in bending. This study not only proposes a bionic rigid-flexible structure with high spatial accessibility but also explains biological properties of a bird neck based on the study of its mechanics characteristics. Based on the modeling and the mechanical properties of the bionic structure in flexible spatial combination deformations, the multi-steady state, and the variable dynamic stiffness, the bird-neck bionic rigid-flexible structure has significant applications such as aeronautical deployable systems, manipulator positioning, and dynamic stability fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
期刊最新文献
Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous zinc-based energy storage devices Prediction of novel tetravalent metal pentazolate salts with anharmonic effect Gene therapy as an emerging treatment for Scn2a mutation-induced autism spectrum disorders Peltier cell calorimetry “as an option” for commonplace cryostats: Application to the case of MnFe(P,Si,B) magnetocaloric materials Digitalized analog integrated circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1