Dieudonné Essola, Jean Chills Amba, Claude Valery Ngayihi Abbe, Joseph Nkongho Anyi, Vladimir Vitalevich Ivanov
{"title":"提高金属机械零件的机械性能,采用振动加工,形成氧化膜和二硫化钼固体润滑剂涂层沉积","authors":"Dieudonné Essola, Jean Chills Amba, Claude Valery Ngayihi Abbe, Joseph Nkongho Anyi, Vladimir Vitalevich Ivanov","doi":"10.1186/s40712-019-0103-8","DOIUrl":null,"url":null,"abstract":"<p>Experimental studies have been carried out to establish the possibility of using vibratory machining technology through shock-wave transmission for oxide coating preparation on aluminum-alloyed machine components and also to discuss the technological possibilities of applying vibration mechanochemical solid lubricant coatings based on MoS<sub>2</sub> to improve the surface quality and performance properties of machine component parts. The coating characteristics are determined by measuring and comparing certain tribological properties of the samples before processing, after normal coating, and after vibratory coating process. A deeper study with a scanning microscope was made by comparing result of normal and vibratory coating. The vibratory coating shows a reduction of grain sizes, a regular orientation of the grain, and a dense grain structure leading to the formation of a thin layer covered by a film orientated parallel to the surface of friction giving an imparted surface finish. The reduction of microroughness is also accompanied with good performances in terms of increasing in wear resistance and decreasing in coefficient of friction. This reflects the presence of complex influence of mechanical and chemical components in the formation of coating on superficial layers during lower shock-wave vibration giving at the end structured ameliorated state of surface that leads to an increase in the part lifespan and equally shows technological opportunities that can be used to improve surface quality and performance properties of machine component parts.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"14 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-019-0103-8","citationCount":"5","resultStr":"{\"title\":\"Enhancement of metallic machine parts mechanical properties by the use of vibratory processing for oxide coated films formation and MoS2 solid lubricant coating deposit\",\"authors\":\"Dieudonné Essola, Jean Chills Amba, Claude Valery Ngayihi Abbe, Joseph Nkongho Anyi, Vladimir Vitalevich Ivanov\",\"doi\":\"10.1186/s40712-019-0103-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Experimental studies have been carried out to establish the possibility of using vibratory machining technology through shock-wave transmission for oxide coating preparation on aluminum-alloyed machine components and also to discuss the technological possibilities of applying vibration mechanochemical solid lubricant coatings based on MoS<sub>2</sub> to improve the surface quality and performance properties of machine component parts. The coating characteristics are determined by measuring and comparing certain tribological properties of the samples before processing, after normal coating, and after vibratory coating process. A deeper study with a scanning microscope was made by comparing result of normal and vibratory coating. The vibratory coating shows a reduction of grain sizes, a regular orientation of the grain, and a dense grain structure leading to the formation of a thin layer covered by a film orientated parallel to the surface of friction giving an imparted surface finish. The reduction of microroughness is also accompanied with good performances in terms of increasing in wear resistance and decreasing in coefficient of friction. This reflects the presence of complex influence of mechanical and chemical components in the formation of coating on superficial layers during lower shock-wave vibration giving at the end structured ameliorated state of surface that leads to an increase in the part lifespan and equally shows technological opportunities that can be used to improve surface quality and performance properties of machine component parts.</p>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40712-019-0103-8\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-019-0103-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-019-0103-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancement of metallic machine parts mechanical properties by the use of vibratory processing for oxide coated films formation and MoS2 solid lubricant coating deposit
Experimental studies have been carried out to establish the possibility of using vibratory machining technology through shock-wave transmission for oxide coating preparation on aluminum-alloyed machine components and also to discuss the technological possibilities of applying vibration mechanochemical solid lubricant coatings based on MoS2 to improve the surface quality and performance properties of machine component parts. The coating characteristics are determined by measuring and comparing certain tribological properties of the samples before processing, after normal coating, and after vibratory coating process. A deeper study with a scanning microscope was made by comparing result of normal and vibratory coating. The vibratory coating shows a reduction of grain sizes, a regular orientation of the grain, and a dense grain structure leading to the formation of a thin layer covered by a film orientated parallel to the surface of friction giving an imparted surface finish. The reduction of microroughness is also accompanied with good performances in terms of increasing in wear resistance and decreasing in coefficient of friction. This reflects the presence of complex influence of mechanical and chemical components in the formation of coating on superficial layers during lower shock-wave vibration giving at the end structured ameliorated state of surface that leads to an increase in the part lifespan and equally shows technological opportunities that can be used to improve surface quality and performance properties of machine component parts.