{"title":"stutzeri假单胞菌纤维素酶基因的分子特征","authors":"Naief H. Al Makishah , Ameer E. Elfarash","doi":"10.1016/j.ejbt.2022.07.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cellulose is one of the most abundant natural sources of carbon. In biofuel manufacturing, cellulase is used as an enzyme to hydrolyze cellulose into a fermentable product (glucose)<em>. Pseudomonas stutzeri</em> is one of the microorganisms found in cattle rumen. The microbiome of the rumen is heterogeneous and known for its potentiality to efficiently hydrolyze cellulose. Recent studies have identified, cloned, and crystallized one of the cellulase genes present in <em>P. stutzeri</em>, the A1501 cellulase gene (PST_2494 gene).</p></div><div><h3>Results</h3><p>This study describes the isolation of cellulase-producing bacteria from sheep's rumen. The highest cellulase-producing isolate was identified as <em>P. stutzeri</em> by 16s rDNA sequencing<em>.</em> qRT-PCR was used to measure the cellulase gene expression levels, revealing a higher gene expression of the PST_1459 gene (4 folds) compared to PST_2494 genes. Moreover, cellulase productivity was enhanced by UV irradiation mutagenesis.</p></div><div><h3>Conclusions</h3><p>Sheep's rumen bacterial isolates were tested for their cellulase productivity, and the highest was identified as <em>P. stutzeri</em>. An investigation of the cellulase genes of <em>P. stutzeri</em> revealed the presence of an unidentified cellulase gene (PST_1459). A qRT-PCR reaction was carried out to validate and measure the expression levels of different cellulase genes, revealing a higher gene expression of the PST_1459 gene than PST_2494 genes. Moreover, UV irradiation mutagenesis was performed to enhance cellulase productivity. The gene expression tested by qRT-PCR confirmed the enhancement of cellulase productivity in some of the mutants obtained.</p><p><strong>How to cite:</strong> Al Makishah NH, Elfarash AE. Molecular characterization of cellulase genes in <em>Pseudomonas stutzeri</em>. Electron J Biotechnol 2022;59. https://doi.org/10.1016/j.ejbt.2022.07.004.</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"59 ","pages":"Pages 55-61"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345822000306/pdfft?md5=e246c9613fb6975ebec857eb2e8ff84f&pid=1-s2.0-S0717345822000306-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular characterization of cellulase genes in Pseudomonas stutzeri\",\"authors\":\"Naief H. Al Makishah , Ameer E. Elfarash\",\"doi\":\"10.1016/j.ejbt.2022.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Cellulose is one of the most abundant natural sources of carbon. In biofuel manufacturing, cellulase is used as an enzyme to hydrolyze cellulose into a fermentable product (glucose)<em>. Pseudomonas stutzeri</em> is one of the microorganisms found in cattle rumen. The microbiome of the rumen is heterogeneous and known for its potentiality to efficiently hydrolyze cellulose. Recent studies have identified, cloned, and crystallized one of the cellulase genes present in <em>P. stutzeri</em>, the A1501 cellulase gene (PST_2494 gene).</p></div><div><h3>Results</h3><p>This study describes the isolation of cellulase-producing bacteria from sheep's rumen. The highest cellulase-producing isolate was identified as <em>P. stutzeri</em> by 16s rDNA sequencing<em>.</em> qRT-PCR was used to measure the cellulase gene expression levels, revealing a higher gene expression of the PST_1459 gene (4 folds) compared to PST_2494 genes. Moreover, cellulase productivity was enhanced by UV irradiation mutagenesis.</p></div><div><h3>Conclusions</h3><p>Sheep's rumen bacterial isolates were tested for their cellulase productivity, and the highest was identified as <em>P. stutzeri</em>. An investigation of the cellulase genes of <em>P. stutzeri</em> revealed the presence of an unidentified cellulase gene (PST_1459). A qRT-PCR reaction was carried out to validate and measure the expression levels of different cellulase genes, revealing a higher gene expression of the PST_1459 gene than PST_2494 genes. Moreover, UV irradiation mutagenesis was performed to enhance cellulase productivity. The gene expression tested by qRT-PCR confirmed the enhancement of cellulase productivity in some of the mutants obtained.</p><p><strong>How to cite:</strong> Al Makishah NH, Elfarash AE. Molecular characterization of cellulase genes in <em>Pseudomonas stutzeri</em>. Electron J Biotechnol 2022;59. https://doi.org/10.1016/j.ejbt.2022.07.004.</p></div>\",\"PeriodicalId\":11529,\"journal\":{\"name\":\"Electronic Journal of Biotechnology\",\"volume\":\"59 \",\"pages\":\"Pages 55-61\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000306/pdfft?md5=e246c9613fb6975ebec857eb2e8ff84f&pid=1-s2.0-S0717345822000306-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000306\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345822000306","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Molecular characterization of cellulase genes in Pseudomonas stutzeri
Background
Cellulose is one of the most abundant natural sources of carbon. In biofuel manufacturing, cellulase is used as an enzyme to hydrolyze cellulose into a fermentable product (glucose). Pseudomonas stutzeri is one of the microorganisms found in cattle rumen. The microbiome of the rumen is heterogeneous and known for its potentiality to efficiently hydrolyze cellulose. Recent studies have identified, cloned, and crystallized one of the cellulase genes present in P. stutzeri, the A1501 cellulase gene (PST_2494 gene).
Results
This study describes the isolation of cellulase-producing bacteria from sheep's rumen. The highest cellulase-producing isolate was identified as P. stutzeri by 16s rDNA sequencing. qRT-PCR was used to measure the cellulase gene expression levels, revealing a higher gene expression of the PST_1459 gene (4 folds) compared to PST_2494 genes. Moreover, cellulase productivity was enhanced by UV irradiation mutagenesis.
Conclusions
Sheep's rumen bacterial isolates were tested for their cellulase productivity, and the highest was identified as P. stutzeri. An investigation of the cellulase genes of P. stutzeri revealed the presence of an unidentified cellulase gene (PST_1459). A qRT-PCR reaction was carried out to validate and measure the expression levels of different cellulase genes, revealing a higher gene expression of the PST_1459 gene than PST_2494 genes. Moreover, UV irradiation mutagenesis was performed to enhance cellulase productivity. The gene expression tested by qRT-PCR confirmed the enhancement of cellulase productivity in some of the mutants obtained.
How to cite: Al Makishah NH, Elfarash AE. Molecular characterization of cellulase genes in Pseudomonas stutzeri. Electron J Biotechnol 2022;59. https://doi.org/10.1016/j.ejbt.2022.07.004.
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering