William Seward, Lixun Chi, Meysam Qadrdan, Adib Allahham, Khaled Alawasa
{"title":"约旦离网电力系统光伏和储能的规模、经济和可靠性分析","authors":"William Seward, Lixun Chi, Meysam Qadrdan, Adib Allahham, Khaled Alawasa","doi":"10.1049/esi2.12108","DOIUrl":null,"url":null,"abstract":"<p>Remote areas in Jordan often rely on expensive and polluting diesel generators to meet their electricity demand. This study investigates 100% renewable solutions to supply the electricity demand of off-grid energy systems through optimal sizing of photovoltaics and energy storage systems. A linear programming approach is proposed to minimise the annualised cost of electricity supply including capital costs of equipment and their operation and maintenance costs. The optimisation determines the size of photovoltaics and energy storage required to satisfy electricity demand at every hour of a selected year. A Jordan campsite was used as a case study to assess and compare the performance of PV-battery storage and PV-hydrogen storage systems from economic and reliability perspectives. The results show that hydrogen storage was more economical for a 100% renewable energy system. However, introducing some diesel generation gave the battery system a significantly lower annualised cost of energy.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 4","pages":"393-404"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12108","citationCount":"0","resultStr":"{\"title\":\"Sizing, economic, and reliability analysis of photovoltaics and energy storage for an off-grid power system in Jordan\",\"authors\":\"William Seward, Lixun Chi, Meysam Qadrdan, Adib Allahham, Khaled Alawasa\",\"doi\":\"10.1049/esi2.12108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Remote areas in Jordan often rely on expensive and polluting diesel generators to meet their electricity demand. This study investigates 100% renewable solutions to supply the electricity demand of off-grid energy systems through optimal sizing of photovoltaics and energy storage systems. A linear programming approach is proposed to minimise the annualised cost of electricity supply including capital costs of equipment and their operation and maintenance costs. The optimisation determines the size of photovoltaics and energy storage required to satisfy electricity demand at every hour of a selected year. A Jordan campsite was used as a case study to assess and compare the performance of PV-battery storage and PV-hydrogen storage systems from economic and reliability perspectives. The results show that hydrogen storage was more economical for a 100% renewable energy system. However, introducing some diesel generation gave the battery system a significantly lower annualised cost of energy.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":\"5 4\",\"pages\":\"393-404\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sizing, economic, and reliability analysis of photovoltaics and energy storage for an off-grid power system in Jordan
Remote areas in Jordan often rely on expensive and polluting diesel generators to meet their electricity demand. This study investigates 100% renewable solutions to supply the electricity demand of off-grid energy systems through optimal sizing of photovoltaics and energy storage systems. A linear programming approach is proposed to minimise the annualised cost of electricity supply including capital costs of equipment and their operation and maintenance costs. The optimisation determines the size of photovoltaics and energy storage required to satisfy electricity demand at every hour of a selected year. A Jordan campsite was used as a case study to assess and compare the performance of PV-battery storage and PV-hydrogen storage systems from economic and reliability perspectives. The results show that hydrogen storage was more economical for a 100% renewable energy system. However, introducing some diesel generation gave the battery system a significantly lower annualised cost of energy.