M. R. Meirelles, J. Malafatti, M. Escote, A. H. Pinto, E. Paris
{"title":"铁酸镁纳米粒子修饰Faujasite沸石的磁性吸附剂去除金属离子","authors":"M. R. Meirelles, J. Malafatti, M. Escote, A. H. Pinto, E. Paris","doi":"10.3390/magnetochemistry9050136","DOIUrl":null,"url":null,"abstract":"Magnetic nanoparticles are a promising alternative as a support in adsorption processes, aiming at the easy recovery of the aqueous medium. A faujasite zeolite (FAU) surface was decorated with magnesium ferrite (MgFe2O4) nanoparticles. FAU is a porous adsorbent with high specific surface area (SSA) and chemical stability. The FAU:MgFe2O4 nanocomposite 3:1 ratio (w w−1) promotes the combination of the surface and magnetic properties. The results showed the effectiveness of the MgFe2O4 immobilization on the FAU surface, exhibiting a high SSA of 400 m2 g−1. The saturation magnetization (Ms) was verified as 5.9 emu g−1 for MgFe2O4 and 0.47 emu g−1 for FAU:MgFe2O4, an environmentally friendly system with soft magnetic characteristics. The magnetic nanocomposite achieved high adsorption values of around 94% removal for Co2+ and Mn2+ ions. Regarding its reuse, the nanocomposite preserved adsorption activity of above 65% until the third cycle. Thus, the FAU:MgFe2O4 nanocomposite presented favorable adsorptive, magnetic, and recovery properties for reuse cycles in polluted water.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnetic Adsorbent Based on Faujasite Zeolite Decorated with Magnesium Ferrite Nanoparticles for Metal Ion Removal\",\"authors\":\"M. R. Meirelles, J. Malafatti, M. Escote, A. H. Pinto, E. Paris\",\"doi\":\"10.3390/magnetochemistry9050136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic nanoparticles are a promising alternative as a support in adsorption processes, aiming at the easy recovery of the aqueous medium. A faujasite zeolite (FAU) surface was decorated with magnesium ferrite (MgFe2O4) nanoparticles. FAU is a porous adsorbent with high specific surface area (SSA) and chemical stability. The FAU:MgFe2O4 nanocomposite 3:1 ratio (w w−1) promotes the combination of the surface and magnetic properties. The results showed the effectiveness of the MgFe2O4 immobilization on the FAU surface, exhibiting a high SSA of 400 m2 g−1. The saturation magnetization (Ms) was verified as 5.9 emu g−1 for MgFe2O4 and 0.47 emu g−1 for FAU:MgFe2O4, an environmentally friendly system with soft magnetic characteristics. The magnetic nanocomposite achieved high adsorption values of around 94% removal for Co2+ and Mn2+ ions. Regarding its reuse, the nanocomposite preserved adsorption activity of above 65% until the third cycle. Thus, the FAU:MgFe2O4 nanocomposite presented favorable adsorptive, magnetic, and recovery properties for reuse cycles in polluted water.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9050136\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9050136","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Magnetic Adsorbent Based on Faujasite Zeolite Decorated with Magnesium Ferrite Nanoparticles for Metal Ion Removal
Magnetic nanoparticles are a promising alternative as a support in adsorption processes, aiming at the easy recovery of the aqueous medium. A faujasite zeolite (FAU) surface was decorated with magnesium ferrite (MgFe2O4) nanoparticles. FAU is a porous adsorbent with high specific surface area (SSA) and chemical stability. The FAU:MgFe2O4 nanocomposite 3:1 ratio (w w−1) promotes the combination of the surface and magnetic properties. The results showed the effectiveness of the MgFe2O4 immobilization on the FAU surface, exhibiting a high SSA of 400 m2 g−1. The saturation magnetization (Ms) was verified as 5.9 emu g−1 for MgFe2O4 and 0.47 emu g−1 for FAU:MgFe2O4, an environmentally friendly system with soft magnetic characteristics. The magnetic nanocomposite achieved high adsorption values of around 94% removal for Co2+ and Mn2+ ions. Regarding its reuse, the nanocomposite preserved adsorption activity of above 65% until the third cycle. Thus, the FAU:MgFe2O4 nanocomposite presented favorable adsorptive, magnetic, and recovery properties for reuse cycles in polluted water.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.