M. Abdel-Latif, N. Eltayeb, Vishal Mahale, J. Bijwe
{"title":"硅灰石-硅烷处理对NAO刹车片力学性能和摩擦学性能的影响","authors":"M. Abdel-Latif, N. Eltayeb, Vishal Mahale, J. Bijwe","doi":"10.1504/ijsurfse.2019.10025577","DOIUrl":null,"url":null,"abstract":"The current study aims to investigate the effect of silane-treatment of wollastonite on the mechanical, tribological performance of non-asbestos organic frictional brake-pad material. Two main friction lining specimens in the shape of brake-pads containing treated wollastonite (Wt) and untreated wollastonite (Wu) were produced to carry on the experiments. All produced samples were characterised and examined for their mechanical, chemical and tribological properties. The experimental results show that all parameters of tribological performance are within the acceptable standard range and that the tribological performance for all samples is almost the same in terms of friction coefficient and fade performance. Regarding wear, recovery performance and disc temperature rise (DTR), Wt samples offer better performance than Wu samples which was attributed to the good adhesion between wollastonite and the polymeric matrix after treatment. Moreover, scanning electron microscopy analysis is done on the tested samples and show overall improved surface of Wt than Wu. Finally, for full use of wollastonite silane-treatment advantages, it is recommended to be used in vehicles with less severe operating conditions such as motorbike and alike.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The effect of wollastonite silane-treatment on mechanical and tribological performance of NAO brake-pads\",\"authors\":\"M. Abdel-Latif, N. Eltayeb, Vishal Mahale, J. Bijwe\",\"doi\":\"10.1504/ijsurfse.2019.10025577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study aims to investigate the effect of silane-treatment of wollastonite on the mechanical, tribological performance of non-asbestos organic frictional brake-pad material. Two main friction lining specimens in the shape of brake-pads containing treated wollastonite (Wt) and untreated wollastonite (Wu) were produced to carry on the experiments. All produced samples were characterised and examined for their mechanical, chemical and tribological properties. The experimental results show that all parameters of tribological performance are within the acceptable standard range and that the tribological performance for all samples is almost the same in terms of friction coefficient and fade performance. Regarding wear, recovery performance and disc temperature rise (DTR), Wt samples offer better performance than Wu samples which was attributed to the good adhesion between wollastonite and the polymeric matrix after treatment. Moreover, scanning electron microscopy analysis is done on the tested samples and show overall improved surface of Wt than Wu. Finally, for full use of wollastonite silane-treatment advantages, it is recommended to be used in vehicles with less severe operating conditions such as motorbike and alike.\",\"PeriodicalId\":14460,\"journal\":{\"name\":\"International Journal of Surface Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/ijsurfse.2019.10025577\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ijsurfse.2019.10025577","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The effect of wollastonite silane-treatment on mechanical and tribological performance of NAO brake-pads
The current study aims to investigate the effect of silane-treatment of wollastonite on the mechanical, tribological performance of non-asbestos organic frictional brake-pad material. Two main friction lining specimens in the shape of brake-pads containing treated wollastonite (Wt) and untreated wollastonite (Wu) were produced to carry on the experiments. All produced samples were characterised and examined for their mechanical, chemical and tribological properties. The experimental results show that all parameters of tribological performance are within the acceptable standard range and that the tribological performance for all samples is almost the same in terms of friction coefficient and fade performance. Regarding wear, recovery performance and disc temperature rise (DTR), Wt samples offer better performance than Wu samples which was attributed to the good adhesion between wollastonite and the polymeric matrix after treatment. Moreover, scanning electron microscopy analysis is done on the tested samples and show overall improved surface of Wt than Wu. Finally, for full use of wollastonite silane-treatment advantages, it is recommended to be used in vehicles with less severe operating conditions such as motorbike and alike.
期刊介绍:
IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.